X(2nd Sm.)-Mathematics-H/CC-4/CBCS

2022

MATHEMATICS — HONOURS

Paper : CC-4

(Group Theory - I)

Full Marks : 65

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

- Answer all the multiple choice questions. Each question carries 2 marks, 1 mark for correct option and 1 mark for justification. (1+1)×10
 - (a) Let G be a group and $a \in G$. If 0(a) = 17, then $0(a^8)$ is
 - (i) 17 (ii) 16
 - (iii) 8 (iv) 5
 - (b) Let (S, o) be a semigroup. Let e and e' be left and right identities respectively. Then
 - (i) e may or may not be equal to e'
 - (ii) $e \neq e'$
 - (iii) e = e'

(iv) e and e' never exist simultaneously.

- (c) Consider the group $\mathbb{Z}^2 = \{(a, b) : a, b \in \mathbb{Z}\}$ under component-wise addition. Then which of the following is a subgroup of \mathbb{Z}^2 ?
 - (i) $\{(a, b) \in \mathbb{Z}^2 | ab = 0\}$ (ii) $\{(a, b) \in \mathbb{Z}^2 | 3a + 2b = 15\}$
 - (iii) $\{(a, b) \in \mathbb{Z}^2 | 7 \text{ divides } ab\}$ (iv) $\{(a, b) \in \mathbb{Z}^2 | 2 \text{ divides } a \text{ and } 3 \text{ divides } b\}$
- (d) In S_5 , the permutation (1254)(243)(12) is identical with
 - (i) (3 4 5) (ii) (5 4 3)
 - (iii) (3 5 4) (iv) (5 3 4)
- (e) Let (\mathbb{Z}, o) is a group with xoy = x + y + 2, $x, y \in \mathbb{Z}$; then the inverse of x is
 - (i) -(x+4) (ii) x^2+6
 - (iii) -(x-4) (iv) x+2

Please Turn Over

X(2nd Sm.)-Mathematics-H/CC-4/CBCS

- (f) Which of the following is true?
 - (i) \mathbb{Z}_n is cyclic if and only if *n* is prime
 - (ii) Every proper subgroup of \mathbb{Z}_n is cyclic
 - (iii) Every proper subgroup of S_4 is cyclic
 - (iv) If every proper subgroup of a group is cyclic, then the group is cyclic.
- (g) Choose the incorrect statement.
 - (i) Every homomorphic image of a group G is a quotient group G_{H} for some choice of normal subgroup H of G
 - (ii) Any two infinite groups are isomorphic
 - (iii) $\mathbb{Z}_{4\pi} \simeq \mathbb{Z}_4$
 - (iv) Every proper subgroup of S_3 is cyclic.
- (h) The number of group homomorphism from the cyclic groups $(\mathbb{Z}_6, +)$ to $(\mathbb{Z}_4, +)$ is
 - (i) 0 (ii) 1
 - (iii) 2 (iv) 3.
- (i) $f: 4\mathbb{Z} \to \mathbb{Z}_3$ is defined by $f(4n) = [n], n \in \mathbb{Z}$, then ker f is
 - (i) 3Z (ii) 6**Z** (iii) 12ZZ (iv) Z.
- (i) Consider the group (\mathbb{Q}^*, \cdot) , the multiplicative group of all non-zero rational numbers and its subgroup \mathbb{Q}^+ , set of all positive rational numbers. Then $[\mathbb{Q}^* : \mathbb{Q}^+]$ is
 - (ii) 3 (i) 2
 - (iv) 8. (iii) 6

Unit - 1

- 2. Answer any two questions :
 - (a) Correct or justify: The set $G = \left\{ \begin{pmatrix} a & a \\ a & a \end{pmatrix} : a \in \mathbb{R}, a \neq 0 \right\}$ forms a group under matrix multiplication and

the group is abelian.

(i) Let $GL(2, \mathbb{R})$ be the group of all non-singular 2×2 matrices over \mathbb{R} . Show that (b)

$$H = \left\{ \begin{pmatrix} a & 0 \\ c & d \end{pmatrix} \in GL(2, \mathbb{R}) : ad \neq 0 \right\} \text{ is a subgroup of } GL(2, \mathbb{R}).$$

(ii) Let (G, o) be a group and a, b be two elements of the group. Assume that 0(a) = 5 and $a^{3} b = b_{0}a^{3}$. Then prove that ab = ba. 3+2

5

X(2nd Sm.)-Mathematics-H/CC-4/CBCS

- (c) Establish a necessary and sufficient condition for a nonempty subset of a group to be a subgroup of it. 5
- (d) (i) Let (G, \circ) be a group. Suppose that $a, b \in G$ such that $a \circ b = b \circ a$ and o(a), o(b) are relatively prime. Then prove that $o(a_0b) = o(a)_0 o(b)$.
 - (ii) Prove that a group G can not be written as the union of two proper subgroups. 3+2

Unit - II

- 3. Answer any four questions :
 - (i) Let G be a group and $a \in G$ be a unique element in G of order 2. Prove that ax = xa for all (a) $x \in G$.

(ii) Find the order of the permutation
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 1 & 5 & 2 & 6 \end{pmatrix} \in S_6.$$
 3+2

- (b) (i) Prove that every group of prime order is cyclic.
 - (ii) Prove that $(\mathbb{Q}, +)$ is a non-cyclic group.
- (c) (i) Show that S_4 has no elements or order ≥ 5 .
 - (ii) In S_6 , let $\rho = (123)$ and $\sigma = (456)$. Find a permutation x in S_6 such that $x \rho x^{-1} = \sigma$. 3+2
- (i) Find all distinct left cosets of the subgroup $H = \{e, (123), (132)\}$ in the group S_3 . (d) (ii) How many generators are there in a group of order 23? 3+2
- (i) Let $\beta = (123)(145)$. Write β^{99} in cycle form. (e) (ii) Let α and β belong to S_n . Prove that $\beta \alpha \beta^{-1}$ and α are both even or both odd permutation. 2+3
- (i) Let G be an abelian group. Show that the set of all elements of finite order in G forms (f) a subgroup of G.
 - (ii) Prove that every group of order 4 is commutative. 3+2
- (i) Let A and B be subgroups of a group G. If |A| = p, a prime number, show that either (g) $A \cap B = \{e\}$ or $A \subseteq B$.
 - (ii) Consider the group \mathbb{R}^2 under component-wise addition of real numbers. Let $H = \{(x, 3x) : x \in \mathbb{R}\}$. Show that H is a subgroup of \mathbb{R}^2 and any straight line parallel to y = 3xis a coset of H. 2+3

Unit - III

- 4. Answer any three questions :
 - (i) Let H be a normal subgroup of G and S be the set of all distinct cosets at H in G. Then prove (a) that (S, \bullet) , where '•' is defined by $aH \bullet bH = abH$, for all $a, b \in G$ forms a group.
 - (ii) Let G be a group and H be a subgroup of G such that [G:H] = 2. Prove that $x^2 \in H$ if $x \in G$. 3+2

Please Turn Over

3+2

- (b) Let G be a group of order n. Prove that G is isomorphic to a subgroup of the symmetric group S_n .
- (c) (i) Let (G, \bullet) be a group in which $(a \bullet b)^3 = a^3 \bullet b^3$ for all $a, b \in G$. Prove that $H = \{x^3 : x \in G\}$ is a normal subgroup of G.
 - (ii) For a fixed element a in a group (G, \bullet) , define $f_a: G \to G$ such that $f_a(x) = a^{-1}x.a$, for all $x \in G$. Show that f_a is a group isomorphism. 3+2
- (d) (i) Prove that any two finite cyclic groups of same order are isomorphic.
 - (ii) Consider \mathbb{C}^* as the group of non-zero complex number under multiplication of complex number and define $f: \mathbb{C}^* \to \mathbb{C}^*$ by $f(z) = z^6$. Prove that f is a homomorphism. 3+2
- (e) (i) Prove that $\frac{8\mathbb{Z}}{56\mathbb{Z}} \simeq \mathbb{Z}_7$.

(ii) State Third Isomorphism theorem in group theory.

3+2