2022

STATISTICS - HONOURS

Paper: CC-4

(Probability and Probability Distributions-II)
Full Marks : 50
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

1. Answer any five questions:
(a) Let X be a discrete random variable with probability generating function $P_{X}(t)=\frac{t}{9}(2 t+1)(t+2)$. Find the distribution of X.
(b) Suppose X has a Geometric distribution with probability mass function

$$
f(x)=p(1-p)^{x}, x=0,1,2, \ldots ; 0<p<1 .
$$

Given $\operatorname{Var}(X)=20$, find the value of p.
(c) Suppose X has a Poisson distribution with $P(X=0)=\frac{1}{e^{5 / 2}}$. What is the mode of X ?
(d) Suppose X is a continuous random variable having Uniform distribution with mean 1 and variance $\frac{4}{3}$. Find $P(X>0)$.
(e) Suppose that Z is a Standard Normal variable. Find $E\left(e^{|Z|}\right)$.
(f) Suppose that X_{1} and X_{2} have the joint probability mass function

$$
f\left(x_{1}, x_{2}\right)=p^{2}(1-p)^{x_{2}}, x_{1}=0,1,2, \ldots, x_{2} \text { and } x_{2}=0,1,2, \ldots
$$

with $0<p<1$. Find the marginal distribution of X_{1}.
(g) Suppose X_{1} and X_{2} have the joint probability density function given by

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}1, & \text { if } 0<x_{1}, x_{2}<1 \\ 0, & \text { otherwise } .\end{cases}
$$

Find $P\left(X_{1} X_{2}>a\right)$ for any $0<a<1$.
(h) Suppose $\left(X_{1}, X_{2}\right)$ have a Trinomial distribution with parameters (n, p_{1}, p_{2}). Write down the conditional distribution of X_{1} given $X_{2}=x_{2}$.
2. Answer any two questions :
(a) Let X_{1}, X_{2}, \ldots be a sequence of independent and identically distributed random variables with finite mean and common probability generating function P_{X}. Let N be a random variable with finite mean and independent of the X_{i} 's with probability generating function P_{N}. Let $T_{N}=X_{1}+X_{2}+\ldots+X_{N}$. Find the probability generating function of T_{N} and hence find the mean of T_{N}.
(b) Find the mean deviation about mean of a Logistic distribution with parameters μ and σ.
(c) Let (X, Y) have joint density $f(x, y)=2,0 \leq x \leq y \leq 1$. Find the joint cumulative distribution function of (X, Y). Also find the marginal densities of X and Y.
3. Answer any three questions:
10×3
(a) Find the probability mass function of a random variable X whose probability generating function is inversely proportional to $\left(3-t^{2}\right)$. Also find the moment generating function of X. Hence obtain the mean and variance of X.
(b) For Negative Binomial distribution with parameters r and p, establish the recursive property of central moments. Hence find a measure of skewness and kurtosis of the Negative Binomial distribution and comment.
(c) Let X be a $N\left(\mu, \sigma^{2}\right)$ random variable truncated between a and b, where $a<b$. Find the moment generating function of X. Hence find the mean and variance of X.
(d) Give an example of a joint probability density function such that the marginal distribution of one of the two random variables is Exponential with mean 1 and the two random variables have a non-zero correlation coefficient. Find the marginal distribution of the other random variable. Also find the correlation coefficient between the two random variables.
(e) (i) Give an example of a bivariate distribution whose marginal distributions are Normal but the joint distribution is not Bivariate Normal.
(ii) Suppose X_{1} and X_{2} are independently distributed according to $N\left(0,2 \sigma^{2}\right)$ and $N\left(1, \sigma^{2}\right)$, respectively. Let $Y_{1}=2 X_{1}+X_{2}$ and $Y_{2}=X_{1}-2 X_{2}$. Find the moment generating function of $\left(Y_{1}, Y_{2}\right)$ and hence comment on the distribution of $\left(Y_{1}, Y_{2}\right)$.

