M. Sc. (Physics) 3rd Semester Examination 2018 PHY 513 (Nuclear and Particle Physics)

Answer in your own words as far as practicable. The marks on the right-hand side denote the full marks for the respective questions.

Answer Question no. 1 and any three from the rest, taking at least one from each of the groups A and B

1. Answer any five:
(a) Explain how the nuclear radius can be estimated from the binding energies of mirror nuclei. The binding energy of ${ }_{3}^{7} \mathrm{Li}$ and ${ }_{4}^{7} \mathrm{Be}$ are 5.60 MeV and 5.37 MeV . Estimate the value of r_{0} in the expression for the nuclear radius $R=r_{0} A^{1 / 3}$.
(b) Obtain an expression of $n-p$ scattering cross-section in terms of the scattering length and the effective range.
(c) Establish a formula for level density from thermodynamic arguments and assuming the Fermi gas model.
(d) Comment on the most probable multipolarity and nature of the following γ-transitions: (i) $2^{-} \longrightarrow 0^{+}$, (ii) $5 / 2^{+} \longrightarrow 3 / 2^{+}$.
(e) What is the helicity of a massless anti-neutrino? Use this fact, momentum conservation and angular momentum conservation to deduce the helicity of the e^{-}emitted in the decay $\pi^{-} \rightarrow e^{-} \bar{\nu}_{e}$ in the rest frame of the π^{-}. Why is this decay suppressed?
(f) An $S U(3)$ Young tableau has two boxes in a column. Find the dimensionality of the corresponding representation by filling up the boxes with different labels. Repeat the exercise for an $S U(3)$ Young tableau with three boxes in a row.

Group A

2. Predict the spin-parity of the ground state of the nuclei ${ }_{9}^{17} \mathrm{~F}$ and ${ }_{8}^{17} \mathrm{O}$. Deduce an expression for the magnetic moment in the extreme single particle model. Calculate the magnetic moment of the ground states of the above two nuclei.
For a three dimensional square well potential of depth V_{0} and radius r_{0} for deuteron, show that for negligibly small binding energy of deuteron,

$$
V_{0} r_{0}^{2} \approx \frac{\hbar^{2} \pi^{2}}{4 M}
$$

where M is the nucleon mass.

$$
[(2+2+2)+4]
$$

3. For the Fermi gas model of the nucleus, show that the average kinetic energy of the nucleons is three-fifth of the Fermi energy. Explain how the concept of surface energy arises in this model.
Mention the importance of the spin-orbit term in the shell model.

Explain the nature of the excitations for the excited levels of nuclei given below. The energies are given in keV in the parentheses.
Zr-90: $0+(1761), 2+(2186), 5-(2319), 4-(2739), 3-(2747), 4+(3077), 2+(3309)$ Pd-106: $0^{+}(0), 2+(511), 2+(1128), 0+(1134), 4+(1229), 3+(1558), 2+(1562)$ U-234: $0^{+}(0), 2+(43), 4+(143), 6+(296), 8+(497), 10+(741)$
4. The neutron-proton interconversion stopped at $t \approx 1 \mathrm{sec}$ when $n_{n} / n_{p}=0.2$, and the big bang nucleosynthesis stopped at $t \approx 400 \mathrm{sec}$, when all the remaining neutrons are absorbed in ${ }^{4} \mathrm{He}$. If $m_{n}-m_{p}=1.3 \mathrm{MeV}$ and the half-life of neutron is 614 sec , calculate the Helium fraction, i.e. the mass fraction in ${ }^{4} \mathrm{He}$ compared to the total baryonic mass.
What would have happened to the abundance of elements heavier than helium if
i) Be-8 was stable?
ii) the Hoyle resonance in C-12 was absent?

Discuss the Bohr-Wheeler theory of nuclear fission. Using the liquid drop mass formula, show that for symmetric fission of a nucleus of mass number A and atomic number Z, the Q-value is approximately given by

$$
Q=a_{s} A^{2 / 3}\left(1-2^{1 / 3}\right)+a_{c} \frac{Z^{2}}{A^{1 / 3}}\left(1-2^{-2 / 3}\right)
$$

where a_{s} and a_{c} are the coefficients of the surface term and the volume term, respectively. $[2+2+(3+3)]$

Group B

5. (a) Explain, deducing the expressions you have to use, why ${ }_{4} B e^{7}$ changes to ${ }_{3} L i^{7}$ by electron capture, but not by positron emission, given that the atomic mass difference is 0.86 MeV .
(b) Explain whether $\frac{1}{2}^{+} \rightarrow \frac{1}{2}^{+}$transition is allowed or first forbidden, and Fermi, GamowTeller or mixed.
(c) Write down the Fermi Lagrangian in its $V-A$ form, responsible for the decay $\mu^{-} \rightarrow$ $e^{-} \nu_{\mu} \bar{\nu}_{e}$.
(d) Represent the equations $3 \times 3=6+3^{*}$ and $3^{*} \times 3=8+1$ in terms of $S U(3)$ Young tableaux. (You do not have to find the dimensionality of the representations.)
(e) Write down the three-quark color singlet state made of the three color states R, G and B.

$$
[3+2+1+2+2]
$$

6. (a) Show that $\bar{\psi} \gamma_{\mu} \psi_{L}=\bar{\psi}_{L} \gamma_{\mu} \psi_{L}$ where ψ_{L} is the left-chiral spinor.
(b) Deduce the mass dimensions of ψ and ϕ from the massless Dirac and the massless Klein-Gordon Lagrangians respectively. If there is a term $\lambda \bar{\psi} \psi \phi$ in the Lagrangian, find the mass dimension of the coupling constant λ.
(c) Write down the spin-triplet and spin-singlet states obtained by combining the S_{z} eigenstates \uparrow and \downarrow of two spin- $\frac{1}{2}$ particles. Hence write down the isotriplet and isosinglet meson states, given the two isospin doublets $q=\left(\begin{array}{ll}u & d\end{array}\right)^{T}$ and $\tilde{q}=\left(\begin{array}{ll}\bar{d} & -\bar{u}\end{array}\right)^{T}$.
