2021

COMPUTER SCIENCE - HONOURS

Paper: CC-9
(Introduction to Algorithms and Its Application)
Full Marks : 50
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 and any four from the rest.

1. Answer any five questions:
(a) Mention the time complexity of BFS traversal of a graph.
(b) Define Ω. Show that $10 n^{2}+6 n+3$ is $\Omega\left(n^{2}\right)$.
(c) What do you understand by worst case time complexity of an algorithm? Give an example.
(d) Define P and NP class of problems.
(e) Differentiate recursive and non-recursive algorithm.
(f) Briefly state an experiment where divide-and-conquer rule approach is suitable.
(g) Mention one advantage and one disadvantage of Greedy algorithm.
(h) Define minimum spanning tree.
2. (a) Mention the purpose of Floyd-Warshall algorithm.
(b) Write down Floyd-Warshall algorithm.
3. (a) Briefly discuss about Travelling Salesman Problem.
(b) Solve the following Travelling Salesman Problem (TSP) using dynamic approach.

There are four cities $1,2,3$ and 4 . Start from city 1 visit all cities.
The cost matrix is given below :
$\left.\begin{array}{c} \\ 1 \\ 2 \\ 3 \\ 3\end{array} \begin{array}{cccc}1 & 2 & 3 & 4 \\ 0 & 10 & 15 & 20 \\ 5 & 0 & 9 & 10 \\ 6 & 13 & 0 & 12 \\ 8 & 8 & 9 & 0\end{array}\right]$
4. (a) Differentiate between divide-and-conquer methods and Dynamic programming approach.
(b) Apply dynamic programming approach to find the following matrix chain multiplication.
$A_{1} A_{2} A_{3} A_{4} A_{5} A_{6}$

Matrix	Dimension A_{1}
$\mathrm{~A}_{2}$	30×35
$\mathrm{~A}_{3}$	35×15
$\mathrm{~A}_{4}$	15×5
$\mathrm{~A}_{5}$	10×20
$\mathrm{~A}_{6}$	20×25

5. (a) Briefly state the graph colouring problem.
(b) Write down the BFS algorithm.
6. (a) Write down Kruskal's algorithm.
(b) Find the Kruskal's algorithm, a minimal spanning tree of the weighted graph.

7. (a) Explain briefly the strategy used in divide-and-conquer (D \& C) method.
(b) Write the algorithm of $\mathrm{D} \& \mathrm{C}$ method for a problem P . State the recurrence relation for computing time of $D \& C$ method.
8. (a) State the Knapsack problem formally. What is its time complexity using Greedy algorithm?
(b) Apply Prim's algorithm to find the minimum spanning tree of the graph given below.

