T(4th Sm.)-Computer Science-H/CC-9/CBCS

2021

COMPUTER SCIENCE — HONOURS

Paper : CC-9

(Introduction to Algorithms and Its Application) Full Marks : 50

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 and any four from the rest.

- 1. Answer any five questions :
 - (a) Mention the time complexity of BFS traversal of a graph.
 - (b) Define Ω . Show that $10n^2 + 6n + 3$ is $\Omega(n^2)$.
 - (c) What do you understand by worst case time complexity of an algorithm? Give an example.
 - (d) Define P and NP class of problems.
 - (e) Differentiate recursive and non-recursive algorithm.
 - (f) Briefly state an experiment where divide-and-conquer rule approach is suitable.
 - (g) Mention one advantage and one disadvantage of Greedy algorithm.
 - (h) Define minimum spanning tree.
- 2. (a) Mention the purpose of Floyd-Warshall algorithm.
 - (b) Write down Floyd-Warshall algorithm.
- 3. (a) Briefly discuss about Travelling Salesman Problem.
 - (b) Solve the following Travelling Salesman Problem (TSP) using dynamic approach. There are four cities 1, 2, 3 and 4. Start from city 1 visit all cities. The cost matrix is given below :

	1	C	2	4
	1	Z	3	4
1	0	10	15	20
2	5	0	9	10
3	6	13	0	12
4	8	8	9	0
	-			_

 2×5

2+8

3+7

T(4th Sm.)-Computer Science-H/CC-9/CBCS (2)

- 4. (a) Differentiate between divide-and-conquer methods and Dynamic programming approach.
 - (b) Apply dynamic programming approach to find the following matrix chain multiplication. $A_1 A_2 A_3 A_4 A_5 A_6$

<u>Matrix</u>	Dimension
A ₁	30 × 35
A ₂	35 × 15
A ₃	15 × 5
A ₄	5 × 10
A ₅	10 × 20
A ₆	20×25

- 5. (a) Briefly state the graph colouring problem.
 - (b) Write down the BFS algorithm.
- 6. (a) Write down Kruskal's algorithm.
 - (b) Find the Kruskal's algorithm, a minimal spanning tree of the weighted graph.

5+5

- 7. (a) Explain briefly the strategy used in divide-and-conquer (D & C) method.
 - (b) Write the algorithm of D & C method for a problem P. State the recurrence relation for computing time of D & C method.

3+7

4+6

8. (a) State the Knapsack problem formally. What is its time complexity using Greedy algorithm?

(3)

(b) Apply Prim's algorithm to find the minimum spanning tree of the graph given below.

(3+2)+5