Gurudas College (CU)
 Internal Examination 2020
 B.Sc Part II
 Physics Hons (PHSA)
 Paper - IVB

Time: 1 Hr
Full Marks: 25

Answer any one of the following

1. Using monochromatic light of known wavelength, Newton's rings were obtained with a planoconvex lens whose curved surface is placed in contact with a plane glass plate.

Marks distribution:

1) Theory: 3
2) Plot the data for D_{p+n}^{2} versus n graph of the rings for different orders in a $m m$ graph paper: 12

Order No (n)	10	15	20	25	30	35	40	45	50
$\mathrm{D}_{\mathrm{p}+\mathrm{n}}$ (in $\mathrm{mm})$	3.5777	4.04969	4.46094	4.92950	5.34789	5.64800	6.01664	6.37965	6.70894

3) Calculation of radius of curvature (R) of the lens from graph: 3
4) Calculate of percentage of error in $R=2$
5) What do you mean by interference? What are the different types of interference? What type of interference is observed in Newton's ring? $1+1+1$
6) What happens if white light is used instead of monochromatic light in Newton's ring experiment? 2
2. The slit width ' a ' and separation between the slits ' b ' of a double slit was measured by observing the diffraction and interference fringes.

Marks distribution:

1) Theory: 3
2) Calculate the slit width ' a ' from the recording of the following data: 5

No of dark diffraction dringes with respect to the central bright fringe	Recording of the scale in cm as observed through the telescope	
	$\mathrm{r} \rightarrow \mathrm{l}$	$\mathrm{l} \rightarrow \mathrm{r}$
2	26.6	26.6
3	26	26.1
4	25.5	25.5
5	24.2	24.1
2	23.7	23.7

[Supplied data: $\lambda=589 \mathrm{~nm}, \mathrm{D}=139 \mathrm{~cm}$]
3) Calculate the the separation ' b ' between slits from the recording of the following data: 5

Order no of dark interference fringes with respect to the central bright fringe	Recording of the scale in cm as observed through the telescope	
	$\mathrm{r} \rightarrow 1$	$\mathrm{l} \rightarrow \mathrm{r}$
2	25.1	25.1
3	25	25
4	24.8	24.8
5	24.7	24.6

4) Calculate the maximum percentage error in ' a ' and ' b ' from the recorded data: 2
5) Evaluate the quantity, $N=2 \frac{b}{a}+1$, using the optical measurement data. What does this quantity signify? $2+1$
6) What do you mean by interference? What is diffraction? What are the differences between interference and diffraction? $2+2+3$
3. A solution of 16% concentration using a given optically active solute was prepared and the rotation of the plane of polarization was measured for five different concentrations by volume of the optically active solution.

Marks distribution:

1) Theory: 3
2) Calculate and draw the calibration curve and find the specific rotation from the following data: $5+5+2$
[Supplied data: V.C. of polarimeter -0.1°]

No of obs	$\%$ strength of the solution	Vernier	Readings of the Vernier ()	
			Circular Scale reading in degree	Vernier Scale reading
1	16	$1^{\text {st }}$	342	3
		$2^{\text {nd }}$	162	8
2	14	$1^{\text {st }}$	340	7
		$2^{\text {nd }}$	160	9
3	12	$1^{\text {st }}$	338	3
		$2^{\text {nd }}$	158	4
4	10	$1^{\text {st }}$	336	9
		$2^{\text {nd }}$	156	4
5	8	$1^{\text {st }}$	334	2
		$2^{\text {nd }}$	154	7
6	Plane water	$1^{\text {st }}$	323	2
		$2^{\text {nd }}$	143	5

3) Estimate the percentage error in specific rotation: 3
4) Write down the parameters on which specific rotation depends: 2
5) What is polarization? What are ordinary and extraordinary rays? $1+(1+1)$
6) State Brewster's law. 2
4. With the help of a ballistic galvanometer, the deflection (d) versus dial reading (θ) for the determination of mutual inductance (M) of the given pair of coils, kept at different positions from 0° to 180° was recorded.

Marks distribution:

1) Theory + Circuit: $4+2$
2) Draw ($d-\theta$) graph from the recording of data for ' d ' and $\theta: 12$

Dial reading	Ballistic throw in cm
0°	23.25
20°	22
40°	15.53
60°	8.67
80°	4.19
90°	0.75
100°	1.45
120°	5.94
140°	11.17
160°	18.1
180°	23.77

3) What is ballistic galvanometer? What is its CDR? $2+1$
4) What is mutual inductance? What is its unit? $1+1$
5) State Lenz's law. 1
6) What is \log decrement of a ballistic galvanometer? 1
5. The resonance curve data of a circuit containing a capacitor (C), a resistor (R) and a coil of unknown inductance (L) connected in series with an a.c. supply was recorded.

Marks Distribution:

1) Theory + Circuit $=4+2$
2) Draw the resonance curve from the record of the voltage $\left(V_{R}\right)$ across R for different frequencies of the fixed input voltage $\left(V_{i}\right): 10$
$[\mathrm{R}=100 \Omega$ and $\mathrm{C}=0.1 \mu \mathrm{~F}]$

Frequency in Hz	3600	3900	4200	4500	4550	4800	5100	5500	5700
r.m.s. voltage across 'R' in V	1.12	1.45	1.63	1.6	1.59	1.4	1.17	0.93	0.83

3) Determine the resonance frequency: 2
4) Determine the value of L: 2
5) Determine Q factor from graph: 2
6) Why a series LCR circuit is called an acceptor circuit while a parallel LCR circuit is called a rejecter circuit? 3
6. In the given (Fig. 1) Wheatstone Bridge network, a variable load resistance $\left(\mathrm{R}_{\mathrm{L}}\right)$ is connected in a diagonal position. Measurement for voltages and current for different values of the resistances were done using suitable meters.

Marks distribution:

1) Theory with circuit diagram $=5+3$
2) The following data was obtained from the measurement:

$\mathrm{R}_{\mathrm{L}}(\Omega)$	90	170	190	210	230	250	300
$\mathrm{~V}_{\mathrm{L}}(\mathrm{V})$	2.15	3.2	3.4	15	14	14	4.22
$\mathrm{I}_{\mathrm{L}}(\mathrm{mA})$	21	17	16	15	14	14	13

Plot of $V_{L}-I_{L}$ graph $=4$
3) Calculate $\mathrm{V}_{\mathrm{Th}}, \mathrm{R}_{\mathrm{Th}}$ and I_{N} from theory and graph $=2+2+2$
4) Calculation of Load Power $P_{L}: 2$
5) Graph of $P_{L}-R_{L}: 3$
6) Find the value of R_{L} from maximum P_{L} and compare it with the theoretical data: 2

Fig. 1
7. Determination of the band gap energy of a given semiconductor sample was done using fourprobe method and the following data was recorded for the study of the variation of voltage (V) with temperature $\left(\mathrm{T}^{\circ} \mathrm{K}\right)$ at a constant current (I).
[Supplied data:
Distance between the probes $(\mathrm{s})=2 \mathrm{~mm}$
Thickness of the crystal (w) $=0.5 \mathrm{~mm}$
Correction Factor $=5.67$]
Marks distribution:

1) Write the theory along with the circuit diagram: $5+2$
2) Calculate resistivity (ρ) from the following data and draw $\log _{\rho} \rho$ versus $\frac{1}{\mathrm{~T}}$ graph. Hence, calculate and determine the value of energy band gap (E_{g}) of the given sample: $4+3+2$

Temp (K)	307	317	327	337	347	357	362	367	372
Voltage (V) $\times 10^{-3}$	177.1	174	163	142	116	90.6	79.5	69.3	66.9

3) Write down the differences between conductor, semiconductor and insulator materials: 3
4) Why four probe method is used instead of two probe method to measure the band gap of a semiconductor? 3
5) Why correction factor is used in this experiment? 3
