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1. (a) Using Kubo-Greenwood formalism, show that the localized states of an amorphous material do
not carry any current at absolute zero temperature. What happens at finite non-zero temperature?

(b) Explain briefly Mott’s minimum metallic conductivity. Does scaling theory of localization support
this in any arbitrary spatial dimension?

(c) Consider a 1D system which is characterized by the scaling function of conductance β(g). Now,
we stack 20 of these 1D systems next to each other and weakly couple them. According to scaling
theory of localization, what will be the new scaling function? Justify your answer.

Assume that in the Ohmic region, the general form of the β function is

β = d− 2− Ad
g

By integrating the above equation in the interval [L0, L], obtain the explicit length dependence of
the conductivity for d = 1.

(3+1)+(2+1)+(2+1)

2. (a) The energy band in a linear chain with interatomic distance a is given by E(k) = E0−t cos ka, (E0

and t are constants). When the width of this band is increased by 20%, what is the percentage change
of the effective mass of the electron at the bottom of the band?

(b) Stating clearly the assumptions, obtain an expression of Mott variable range hopping (VRH)
conductivity for 2d amorphous system as a function of temperature.

(c) The resistivity of a metal in the presence of magnetic impurities, as per Kondo’s calculation, is
given by

R(T ) = R0

[
1 + 2Jρ log | kBTD−εF |

]
where R0 is the resistivity in absence of an impurity, J is the strength of the interaction between
conduction electrons and impurity, D is the range of the electron energy, and ρ, a constant density
of states. Find an estimate of the Kondo temperature Tk in terms of these parameters.

(d) Explain how “screening” occurs if an external negative charge is inserted in the uniform electron
gas in the presence of a positive ion background.

2+3+3+2

3. (a) Is magnetic dipolar interaction responsible for the exchange interaction in Heisenberg Spin Hamil-
tonian? Explain.

(b) With the help of Holstein-Primakoff transformation, derive the magnon dispersion relation E(ka)
of a ferromagnetic linear chain of lattice constant a. Sketch the dispersion relation as a function of
dimensionless varable ka.

(c) Three quantum S = 1 atoms are located at the vertices of an equilateral traingle and is given by

the Hamiltonian H = −2J
(
~S1 · ~S2 + ~S2 · ~S3 + ~S3 · ~S1

)
. Find the energy eigenvalues of the system.



(d) Some organic molecules have a triplet (S = 1) excited state at an energy kB∆ above a singlet
(S = 0) ground state. Draw the energy levels of the system in presence of a magnetic field B. Hence.
explain why the system does not show spontaneous magnetization at a given temperature T .

2+(3+1)+2+2

4. (a) Distinguish between the energy gap in superconductor and that in semiconductor. Below is a list
of critical temperature Tc (measured in K) and the energy gap ∆(0) (measured in 10−4 eV) at zero
temperature. Verify whether they satisfy BCS theory or not.

System Sn Al In T l

∆(0) 5.614 1.753 5.278 3.71

Tc 3.72 1.196 3.40 2.39

(b) In the mean field level (HF theory), the following matrix elements in connecton with the BCS
theory of superconductivity can be simplified as〈

ΨBCS |
∑
kk′ Vkk′b

†
kbk′ |ΨBCS

〉
≈
∑
kk′ Vkk′

〈
ΨBCS |b†k|ΨBCS

〉
〈ΨBCS |bk′ |ΨBCS〉

Evaluate the matrix elements and physically interpret the result.

(c) Which particular continuous symmetry is spontaneously broken in superconductivity? What is
its consequence?

(2+2)+(3+1)+(1+1)

5. (a) ΨA and ΨB are two determinantal states, describing a system of three fermions.

ΨA =
1√
3!

det{ψ1ψ2ψ3}

ΨB =
1√
3!

det{ψ1ψ2ψ4}

Here ψ1, ψ2, ψ3, ψ4 are single-particle wave functions.

Given that G1 =
∑
i hi and G2 = 1

2

∑
i,j;i 6=j ui,j are one-body and two-body operators respectively,

evaluate 〈ΨA|G1|ΨB〉 and 〈ΨA|G2|ΨB〉.

(b) Discuss why Hartree-Fock method provides an upper bound to the actual ground-state energy of
a many-electron system.

(4+4)+2

6. (a) Consider a many-body fermionic state |1100110 · · ·〉 . Express this state in terms of excitations
(i) about the vacuum state |0000000 · · ·〉; and (ii) about the “Filled Fermi sea” |1111000 · · ·〉.



(b) For a many-fermion system, the density operator is given by

ρ(r) = Ψ†(r)Ψ(r)

Where Ψ(r) is the fermionic field. Expanding Ψ(r) in the plane wave basis, compute the Fourier
transform of ρ(r).

(c) An “extended” version of the Hubbard Hamiltonian is given by :

H = −t
∑

<jl>,σ

c†jσclσ + U
∑
j

nj↑nj↓ + V
∑
<jl>

nj↑nl↓

Here, in addition to the usual on-site interaction U , there is an interaction V between the up-spin
and down-spin electrons belonging to nearest neighbour sites.

(i) Write down the possible states for such a 2-site system comprising of one up-spin electron and
one down-spin electron.

(ii) If the hopping t is set to 0, construct the Hamiltonian in matrix notation and find the corre-
sponding energy eigenvalues.

2+3+(2+3)

7. (a) Consider a cylinder of radius R and height Z, containing superfluid Helium. It is rotating with
an angular velocity Ω. Vortex lines are formed inside the superfluid.

(i) Show that the total number of vortices increases with an increasing angular velocity Ω.

(ii) For a very large angular velocity, the vortices start to overlap. Estimate the value of this critical Ωc

in terms of the vortex core radius a0. Argue whether the system would remain a superfluid if Ω > Ωc.

(b) Draw the occupation probability P (p) vs. momentum p curve for superfluid 4He, both for T < Tc
and T > Tc (Tc is the critical temperature). How is it different from the momentum distribution of
a non-interacting Bose gas?

(3+3)+(2+2)


