2021

BIOCHEMISTRY — **HONOURS**

Paper: CC-5

Full Marks: 50

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Group - A

1. Answer any five questions :

 2×5

- (a) Why glass cuvettes are not used in UV spectroscopy?
- (b) What is buffer capacity? How does the buffer concentration influence its buffer capacity?
- (c) Addition of NaOH to 4-nitrophenol deepens its colour. Explain with proper reasoning.
- (d) What is hydrophobic effect? How does it account for protein stability in biological solvent?
- (e) Why do sample solutions of high concentrations deviate from the linearity of Beer-Lambert's law?
- (f) What factors affect fluorescence life time?
- (g) What is molar extinction coefficient? On what factors does it depend?
- (h) Between the nuclei C^{12} and C^{13} , which is NMR active and why?
- (i) What is viscosity coefficient? State its S.I. unit.
- (j) Distinguish between dynamic and static quenching.

Group - B

Answer any two questions.

- 2. (a) Which of the following molecules will be IR active during symmetric stretching and why?
 - (i) N₂ (ii) NO.
 - (b) 'Absorption spectra are generally broad unlike NMR peaks which are sharp'— Justify the statement. (1½×2)+2
- **3.** (a) What is isoelectric point?
 - (b) Comment on the solubility of an amino acid at its isoelectric point.
 - (c) The titration curve of the amino acid glycine (with NaOH) shows pH values of 2.34 and 9.60 at 25% and 75% progression of the titration respectively. Calculate the isoelectric point of glycine. 1+2+2
- 4. (a) What is stretching frequency? On what factors does it depend?
 - (b) The H atoms in benzene absorb 436 Hz more than the reference compound in a 60 MHz ¹H-NMR spectrophotometer. Calculate the chemical shift of the benzene protons. 2+3

Please Turn Over

Group - C

Answer any three questions.

- 5. (a) How can DNA melting be followed spectroscopically?
 - (b) The peptide bonds in proteins show a strong absorption at 190 nm and a weak one between 210-220 nm. Comment on the occurrence and intensities of these bands.
 - (c) A compound X (molar mass = 220) shows an absorption maximum of 1.30 at 230 nm with an extinction coefficient of 10,000 units. Calculate its concentration in gL^{-1} .
 - (d) How can α -helices be distinguished from β -sheet spectroscopically?

2+3+3+2

- **6.** (a) What is 'Zero-Point Energy'?
 - (b) Which is an essential requirement for fluorescence resonance energy transfer, FRET to occur? What parameters affect FRET?
 - (c) Draw the proton NMR spectrum of the following compound showing the multiplicity of each bond. $CH_3 CH_2 Br$. 2+(2+2)+4
- 7. (a) What is Stern-Volmer constant? How can it be measured experimentally?
 - (b) What is quantum yield? Why is its value typically lesser than unity?
 - (c) The Ramachandran plot for polyglycine shows more allowed regions than for any other amino acid. Explain.
 - (d) Why is the lifetime of phosphorescence much higher than that of fluorescence? (1+2)+2+3+2
- **8.** (a) Draw a simplified ¹H-NMR pattern for the compound 1,3-dichloro propane showing the relative intensity and multiplicity of each band.
 - (b) State the units of flux and diffusion coefficient. How does the diffusion coefficient for a solute-solvent pair vary with temperature?
 - (c) Calculate the decrease in the flow rate of a solution through a capillary tube, if its radius is reduced by 5% of its initial value. 3+(2+2)+3