Gurudas College (University of Calcutta)

M. Sc. Semester 2, Internal Examination, 2020 Subject: PHYSICS Paper: PHY 421 (Classical Electrodynamics)

Time: 1hr

Full marks: 25

Answer any five questions from below.

- (i) What is the aim of a gauge condition of potentials?
 (ii) State the Coulomb gauge condition.
 (iii) What is the dynamic equations for the scalar and vector potentials under the Coulomb gauge? [2+1+2]
- 2. (i) State Poynting's theorem for conservation of energy of an electromagnetic field.
 (ii) Define Maxwell's stress tensor
 (iii) State the law of conservation of linear momentum for a system of charges moving in an electromagnetic field. [1+2+2]

3. $F^{\mu\nu}$ and $\tilde{F}^{\mu\nu}$ are electromagnetic field tensor and its dual tensor respectively. Find out two Lorentz invariants $F^{\mu\nu}F_{\mu\nu}$ and $\tilde{F}^{\mu\nu}\tilde{F}_{\mu\nu}$ in terms of \vec{E} and \vec{B} fields. 3+2

4. Action of electromagnetic field in presence of four current $\,J^{\mu}\,$ is

 $A = \int (-\frac{1}{16\pi} F^{\mu\nu} F_{\mu\nu} - \frac{1}{c} J^{\mu} A_{\mu}) d^4x$ Show that this action will remain invariant under gauge transformation $A'_{\mu} = A_{\mu} + \partial_{\mu} \alpha$ provided the four current is conserved: $\partial_{\mu} J^{\mu} = 0$ and current J^{μ} is localised in finite part of space time.

(where α is space time dependent gauge parameter)

5

5. a) Write down Lorentz gauge condition explaining the symbol. Is this condition Lorentz invariant? Deduce the wave equation involving ϕ and \vec{A} using this condition.

(Symbols have their usual meaning.)

b) Explain from special theory of relativity, why a uniformly moving charge distribution (velocity is same for all charges) cannot radiate? 3+2

6. a) Why should radiation fields \vec{E} and \vec{B} should vary as $\frac{1}{r}$, r being the distance of the field point from the origin?

b) Starting from retarded potential solution ϕ and \vec{A} find out \vec{B} in the free space

for the radiation field.

2+3

7. a) Write down Euler's equation of incompressible, viscous & conducting plasma in terms of the mass density (ρ), velocity (v), thermodynamic pressure (P) and magnetic field (B).

b) What is 'pinch effect' of plasma?Write down the expression for the total current of a cylindrically pinched plasma column.

c) Determine the order of magnitude of current required for the purpose of confinement of hot plasma of density 10 15 particles/cc at temperature 10^8 K, pressure 14 atmosphere and magnetic field ~ 10 19 K Gauss at the plasma surface.

1+(1+1)+2