X(2nd Sm.)-Chemistry-H/CC-4/CBCS

2022

CHEMISTRY — HONOURS

Paper : CC-4

(Inorganic Chemistry - 2)

Full Marks : 50

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 and any eight questions from the rest.

1. Answer any ten questions :

1×10

- (a) Predict the geometry of IOF_5 and mention the hybridization of the central atom.
- (b) How does conductivity of metals and semi-conductors vary with temperature?
- (c) What is the expected mode of decay of $_{11}Na^{24}$?
- (d) Calculate the formal charge on each of the atoms of BF_4^- .
- (e) Mention the limiting radius ratio for octahedral and cubic lattice structures.
- (f) Predict the greater bond angle among (\angle Cl–O–Cl) and (\angle Cl– S–Cl) in Cl₂O and SCl₂ respectively.
- (g) What type of defect will produce when solid KCl is heated with potassium vapour?
- (h) Draw two orbitals of your choice and depict them with 'gerade' or 'ungerade' designation.
- (i) Give an example of spallation reaction.
- (j) Write the trend in bond lengths of N_2^+ , N_2 and N_2^- .
- (k) Arrange NH₃, PH₃ and AsH₃ in terms of their boiling points.
- (1) Give an example of a molecule containing non-equivalent hybrid orbitals of the central atom.
- 2. (a) Explain the nature of defects present in NaCl and AgBr crystals with justification.
 - (b) Draw the resonating structures of thiocyanate (SCN⁻) and cyanate (CNO⁻) ions and predict the most stable structures in each case.
- 3. (a) Draw the MO diagram of CO and interprete its π -acidic character from the diagram.
 - (b) Why is the melting point of CuCl much lower than that of KCl? 3+2
- (a) Predict the shape of the following compounds and the hybridization of the central atom :
 (i) IO₂F₂⁺ (ii) XeF₄ (iii) [ICl₄]⁺
 - (b) Bond angle in $(SiH_3)_2O$ is larger than $(CH_3)_2O$. Explain.

Please Turn Over

3+2

X(2nd Sm.)-Chemistry-H/CC-4/CBCS

(2)

- 5. (a) Calculate the approximate energy released in nuclear fission of ${}_{92}U^{235}$. Binding energy per nucleon of U^{235} is 7.6 MeV and that of the fission fragments is 8.45 MeV.
 - (b) What is radiocarbon dating?

3+2

3+2

- 6. (a) How can you differentiate between the conducting character of white tin and grey tin in the light of valence bond theory of metallic bond?
 - (b) CH₃. and CF₃. have different geometries. Explain.
- (a) Boron (B₂) is paramagnetic while carbon (C₂) is diamagnetic. Explain in the light of MOT.
 (b) ¹⁸₉F nuclide is radioactive although its n/p ratio is one. Explain. 3+2
- 8. (a) HF forms strong H-bonds than H_2O though ΔH_{vap} of HF is lower than that of H_2O . Explain.

(b) Calculate the nuclear binding energy per nucleon in ${}^{7}_{3}$ Li. (Given m_e = 0.000549 amu, m_p = 1.007277 amu, m_n = 1.008665 amu and atomic mass of ${}^{7}_{3}$ Li = 6.9814 amu) 3+2

- 9. (a) What happens when Ge is doped with (i) As and (ii) Ga? Explain in the light of band theory.
 - (b) Calculate the partial charge on the bonded atoms and percent ionic character of HBr. 3+2 [$\mu = 2.60 \times 10^{-30}$ C.m H - Br = 1.41Å, e = 1.60 × 10⁻¹⁹ C 1
- 10. (a) Explain the order of bond angles : $\angle H C H$, $\angle H C F$, $\angle F C F$ in CH_2F_2 in the light of Bent's rule.
 - (b) I_2 is soluble in KI but not in water. Justify.
- (a) MgSO₄ is soluble in water but BaSO₄ is insoluble, whereas BaO is more soluble in water than MgO. Explain.
 - (b) Write the basis set of orbitals for the formation of HF and explain each term. 3+2

12. (a) Calculate the lattice energy of MgBr₂. Given : Sublimation energy of Mg(s) = + 148 kJ mol⁻¹ Ionization energy (IE₁ + IE₂) of Mg → Mg²⁺ = +2187 kJ mol⁻¹ Vaporization energy of Br₂(l) = + 31 kJ mol⁻¹ Dissociation energy of Br₂ (g) = + 193 kJ mol⁻¹ Electron gain enthalpy of Br (g) = - 331 kJ mol⁻¹ Formation energy of MgBr₂ (s) = - 524 kJ mol⁻¹

(b) Compare the thermal stability between $MgCO_3$ and $BeCO_3$ and explain.

3+2

3+2

- 13. (a) Predict and explain the order of bond angles : (i) NO_2^+ and NO_2^- (ii) H_2S and H_2O
 - (b) Write two limitations of radius ratio rule.

•

3+2