2022

CHEMISTRY - HONOURS

Paper: CC-4
(Inorganic Chemistry - 2)

Full Marks : 50
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 and any eight questions from the rest.

1. Answer any ten questions:
(a) Predict the geometry of IOF_{5} and mention the hybridization of the central atom.
(b) How does conductivity of metals and semi-conductors vary with temperature?
(c) What is the expected mode of decay of ${ }_{11} \mathrm{Na}^{24}$?
(d) Calculate the formal charge on each of the atoms of $\mathrm{BF}_{4}{ }^{-}$.
(e) Mention the limiting radius ratio for octahedral and cubic lattice structures.
(f) Predict the greater bond angle among ($\angle \mathrm{Cl}-\mathrm{O}-\mathrm{Cl})$ and $(\angle \mathrm{Cl}-\mathrm{S}-\mathrm{Cl})$ in $\mathrm{Cl}_{2} \mathrm{O}$ and SCl_{2} respectively.
(g) What type of defect will produce when solid KCl is heated with potassium vapour?
(h) Draw two orbitals of your choice and depict them with 'gerade' or 'ungerade' designation.
(i) Give an example of spallation reaction.
(j) Write the trend in bond lengths of $\mathrm{N}_{2}{ }^{+}, \mathrm{N}_{2}$ and $\mathrm{N}_{2}{ }^{-}$.
(k) Arrange $\mathrm{NH}_{3}, \mathrm{PH}_{3}$ and AsH_{3} in terms of their boiling points.
(l) Give an example of a molecule containing non-equivalent hybrid orbitals of the central atom.
2. (a) Explain the nature of defects present in NaCl and AgBr crystals with justification.
(b) Draw the resonating structures of thiocyanate $\left(\mathrm{SCN}^{-}\right)$and cyanate $\left(\mathrm{CNO}^{-}\right)$ions and predict the most stable structures in each case.
3. (a) Draw the MO diagram of CO and interprete its π-acidic character from the diagram.
(b) Why is the melting point of CuCl much lower than that of KCl ?
4. (a) Predict the shape of the following compounds and the hybridization of the central atom :
(i) $1 \mathrm{O}_{2} \mathrm{~F}_{2}^{+}$
(ii) XeF_{4}
(iii) $\left[\mathrm{ICl}_{4}\right]^{+}$
(b) Bond angle in $\left(\mathrm{SiH}_{3}\right)_{2} \mathrm{O}$ is larger than $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}$. Explain.
5. (a) Calculate the approximate energy released in nuclear fission of ${ }_{92} \mathrm{U}^{235}$. Binding energy per nucleon of U^{235} is 7.6 MeV and that of the fission fragments is 8.45 MeV .
(b) What is radiocarbon dating?
6. (a) How can you differentiate between the conducting character of white tin and grey tin in the light of valence bond theory of metallic bond?
(b) CH_{3}. and CF_{3}. have different geometries. Explain.
7. (a) Boron $\left(\mathrm{B}_{2}\right)$ is paramagnetic while carbon $\left(\mathrm{C}_{2}\right)$ is diamagnetic. Explain in the light of MOT.
(b) ${ }_{9}^{18} \mathrm{~F}$ nuclide is radioactive although its n / p ratio is one. Explain.
8. (a) HF forms strong H-bonds than $\mathrm{H}_{2} \mathrm{O}$ though $\Delta \mathrm{H}_{\text {vap }}$ of HF is lower than that of $\mathrm{H}_{2} \mathrm{O}$. Explain.
(b) Calculate the nuclear binding energy per nucleon in ${ }_{3}^{7} \mathrm{Li}$.
(Given $\mathrm{m}_{\mathrm{e}}=0.000549 \mathrm{amu}, \mathrm{m}_{\mathrm{p}}=1.007277 \mathrm{amu}, \quad \mathrm{m}_{\mathrm{n}}=1.008665 \mathrm{amu}$ and atomic mass of ${ }_{3}^{7} \mathrm{Li}=6.9814 \mathrm{amu}$)
9. (a) What happens when Ge is doped with (i) As and (ii) Ga ? Explain in the light of band theory.
(b) Calculate the partial charge on the bonded atoms and percent ionic character of HBr . $3+2$
$\left[\mu=2.60 \times 10^{-30} \mathrm{C} . \mathrm{m}\right.$

$$
\left.\mathrm{H}-\mathrm{Br}=1.41 \AA, \mathrm{e}=1.60 \times 10^{-19} \mathrm{C}\right]
$$

10. (a) Explain the order of bond angles: $\angle \mathrm{H}-\mathrm{C}-\mathrm{H}, \angle \mathrm{H}-\mathrm{C}-\mathrm{F}, \angle \mathrm{F}-\mathrm{C}-\mathrm{F}$ in $\mathrm{CH}_{2} \mathrm{~F}_{2}$ in the light of Bent's rule.
(b) I_{2} is soluble in KI but not in water. Justify.
11. (a) MgSO_{4} is soluble in water but BaSO_{4} is insoluble, whereas BaO is more soluble in water than MgO . Explain.
(b) Write the basis set of orbitals for the formation of HF and explain each term. $3+2$
12. (a) Calculate the lattice energy of MgBr_{2}.

Given : Sublimation energy of $\mathrm{Mg}(s)=+148 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Ionization energy ($\mathrm{IE}_{1}+\mathrm{IE}_{2}$) of $\mathrm{Mg} \rightarrow \mathrm{Mg}^{2+}=+2187 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Vaporization energy of $\mathrm{Br}_{2}(l)=+31 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Dissociation energy of $\mathrm{Br}_{2}(g)=+193 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Electron gain enthalpy of $\mathrm{Br}(g)=-331 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Formation energy of $\mathrm{MgBr}_{2}(s)=-524 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(b) Compare the thermal stability between MgCO_{3} and BeCO_{3} and explain.
13. (a) Predict and explain the order of bond angles :

$$
\text { (i) } \mathrm{NO}_{2}^{+} \text {and } \mathrm{NO}_{2}^{-} \text {(ii) } \mathrm{H}_{2} \mathrm{~S} \text { and } \mathrm{H}_{2} \mathrm{O}
$$

(b) Write two limitations of radius ratio rule. $3+2$

