2021

ECONOMICS - HONOURS

Second Paper

(Group - B)

Full Marks : 50
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

SECTION - A

Answer any five questions.

1. (a) Enumerate all the subsets of the set $A=\{1,3,5,7\}$. How many subsets are there all together?
(b) Given $A=\left[\begin{array}{ccc}-1 & 5 & 7 \\ 0 & -2 & 4\end{array}\right]$, show that $A I=I A=A$. Indicate the dimension of identity matrix used in each case.
2. State the Euler's theorem and verify it for the function $Y=A \cdot x_{1}{ }^{\alpha} \cdot x_{2}{ }^{\beta}$ where $A, x_{1}, x_{2}>0,0<\alpha, \beta<1$ and $\alpha+\beta=1$.
3. Solve the following system of linear equations applying the Cramer's rule :

$$
\begin{align*}
& 4 x_{1}+3 x_{2}-2 x_{3}=7 \\
& x_{1}+x_{2}=5 \\
& 3 x_{1}+x_{3}=4 \tag{4}
\end{align*}
$$

4. Suppose that the profit (π) of a firm depends upon research (R) and advertisement (A) expenditures in the following way:

$$
\pi=-R^{2}-A^{2}+22 R+18 A-102
$$

Find out the optimum research and advertisement expenditures of the firm for profit maximization. 4
5. Solve the following linear differential equation and verify the solution :

$$
\frac{d y}{d t}+5 y=15 ; \quad y(0)=1
$$

6. Use first derivative and second derivative of the following function to sketch the graph of the function $f(x)=x^{3}-3 x$.
7. Find out the mixed strategy solution for the following zero-sum game :

	Player II		
Player I		Left	Right
	Up	4	-2
	Down	-5	4

8. Given,

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 6
\end{array}\right], B=\left[\begin{array}{cc}
3 & -8 \\
2 & 3
\end{array}\right], C=\left[\begin{array}{cc}
5 & 2 \\
1 & -2
\end{array}\right], D=\left[\begin{array}{cc}
\frac{1}{6} & \frac{1}{6} \\
\frac{1}{12} & \frac{-5}{12}
\end{array}\right]
$$

(a) Verify that $\mathrm{AB}=\mathrm{AC}$ even though $\mathrm{B} \neq \mathrm{C}$.
(b) Are C and D inverse to each other?

SECTION -B

Answer any five questions.
9. Consider the function :

$$
\begin{aligned}
f(x) & =1+x & & \text { if } \quad x<0 \\
& =x^{2}+x+1 & & \text { if } \quad x>0 \\
& =1 & & \text { if } \quad x=0
\end{aligned}
$$

(a) Sketch the graph of the function.
(b) Is $f(x)$ continuous? Is it smooth?
(c) Using the definition of continuity, check whether $f(x)$ is continuous at $x=0$ or not. $2+1+1+2$
10. Consider $z=e^{x^{2} y+x y^{2}}$
(a) Is the function z homogeneous?
(b) Check the homogeneity of $F(z)=\ln z$.
(c) Is the function z homothetic?
11. Determine the values of the constants a, b and c such that the function $f(x, y)=a x^{2} y+b x y+2 x y^{2}+c$ has a local minimum at the point $(2 / 3,1 / 3)$ with local minimum value $=-1 / 9$.
12. Given the following input-output table for a three-industry model-

Industry	I1	I2	I3
I1	$0 \cdot 3$	$0 \cdot 2$	$0 \cdot 2$
I2	$0 \cdot 2$	$0 \cdot 1$	$0 \cdot 5$
I3	$0 \cdot 2$	$0 \cdot 4$	$0 \cdot 2$
Labour	$0 \cdot 4$	$0 \cdot 3$	$0 \cdot 1$

(a) Check whether the model satisfies the Hawkins-Simon conditions.
(b) If the optimum output levels for I1, I2 and I3 are 241 units, 215 units and 230 units respectively and the total labour supply $\bar{L}=200$, will there be any unemployment in the economy?
13. Consider the production function $Q=A K^{\alpha} L^{\beta}, A, \alpha, \beta>0$.
(a) Show that the function has the property of increasing marginal productivity of capital and labour if $\alpha>1$ and $\beta>1$.
(b) What will be the shape of the isoquant (level curve of the production function)?
14. Maximise $U(x, y)=x^{\alpha} y^{\beta}(x, y>0, \alpha, \beta>0)$

Subject to $M=x p_{x}+y p_{y} \quad\left(M, p_{x}, p_{y}>0\right)$
(a) Find the demand functions of x and y by using the logarithmic transformation of the given function. [Assume that the second order sufficient conditions are satisfied].
(b) Explain the justification of using the above transformation.
(c) Show that the demand functions of x and y are homogeneous of degree zero in money income and absolute prices.
15. Maximise $\pi=3 y_{1}+4 y_{2}+3 y_{3}$

Subject to $y_{1}+y_{2}+3 y_{3} \leq 12$
$2 y_{1}+4 y_{2}+y_{3} \leq 42$
$y_{1} \geq 0, y_{2} \geq 0, y_{3} \geq 0$
(a) Write down the dual of the above primal problem.
(b) Solve the dual problem graphically.
16. Consider the following game-

A^{B}	B_{1}	B_{2}
$\mathrm{~A}_{1}$	6,6	4,6
$\mathrm{~A}_{2}$	6,4	0,0

(a) What do you mean by a 'dominant strategy'? Obtain the dominant strategies for player A and B.
(b) Define a Nash Equilibrium. Does the game have any pure strategy Nash Equilibrium? If so, what are they?

