2021

STATISTICS - HONOURS

Third Paper
(Group - A)
Full Marks : 50
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Section-I

Answer any two from question nos. 1-4 and any one from question nos. 5 and 6.

1. Establish the relationship between E and Δ.

Show that $\Delta^{n} U_{x-n}=U_{x}-\binom{n}{1} U_{x-1}+\binom{n}{2} U_{x-2}-\binom{n}{3} U_{x-3}+\ldots+(-1)^{n} U_{x-n}$.
2. Stating clearly all the assumptions, derive trapezoidal's rule for numerical integration.
3. Derive the form of the error term in Newton's forward formula.
4. Find the extrema of the function $f(x, y)=2 y+x$, subject to the constraint $0=g(x, y)=y^{2}+x y-1$.
5. Describe Newton-Raphson method for solving single unknown. Discuss about its geometric significance and convergence.
6. (a) What do you mean by transformation of variables? Discuss, with examples, the role of Jacobian in this context.
(b) Discuss the Lagrange multiplier method. For a rectangle, whose perimeter is 20 m , use this to find the dimensions that will maximize the area.
$(3+5)+(3+4)$

Section - II

Answer any two from question nos. 7-10 and any one from question nos. $\mathbf{1 1}$ and 12.
7. If $P(t)$ is the probability generating function of a non-negative integer valued random variable X, with $q_{j}=P[X>j]$, then show that the generating function of q_{j} is given by,

$$
\begin{equation*}
Q(t)=\frac{1-P(t)}{1-t},|t|<1 \tag{5}
\end{equation*}
$$

8. What do you mean by loss of memory property of a statistical distribution? Name two such distributions.
9. Discuss Thurstone scaling procedure.
10. Suppose a $N\left(\mu, \sigma^{2}\right)$ distribution is left truncated at $x=A$. Find the mean of this distribution.
11. (a) Show that the hyper geometric distribution originates as a result of random sampling without replacement from a finite population.
(b) Show that the cumulative probabilities of a binomial distribution can be expressed as incomplete Beta functions.
12. (a) 'If X and Y are two random variables with correlation coefficient ρ, such that (X, Y) follows bivariate normal distribution, then X and Y are independent iff $\rho=0$ '— prove or disprove.
(b) Let X be a continuous random variable symmetrically distributed about ' a '. Let Y be another random variable, such that,

$$
Y= \begin{cases}1, & \text { if } x \leq a \\ 0, & \text { if } x>a\end{cases}
$$

Let $Z=|X-a|$, show that Y and Z are independently distributed.
(c) For a normally distributed random variable, show that all odd order central moments are zero.

