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2021
STATISTICS — HONOURS

Third Paper
(Group - A)

Full Marks : 50

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words

as far as practicable.

Section - I
Answer any two from question nos. 1-4 and any one from question nos. 5 and 6.

1. Establish the relationship between E and .
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2. Stating clearly all the assumptions, derive trapezoidal’s rule for numerical integration. 5

3. Derive the form of the error term in Newton’s forward formula. 5

4. Find the extrema of the function f (x, y) = 2y + x, subject to the constraint 0 = g(x, y) = y2 + xy – 1.
5

5. Describe Newton-Raphson method for solving single unknown. Discuss about its geometric significance
and convergence. 8+4+3

6. (a) What do you mean by transformation of variables? Discuss, with examples, the role of Jacobian in
this context.

(b) Discuss the Lagrange multiplier method. For a rectangle, whose perimeter is 20 m, use this to find
the dimensions that will maximize the area. (3+5)+(3+4)

Section - II
Answer any two from question nos. 7-10 and any one from question nos. 11 and 12.

7. If P(t) is the probability generating function of a non-negative integer valued random variable X, with
qj = P[X > j], then show that the generating function of qj is given by,
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8. What do you mean by loss of memory property of a statistical distribution? Name two such distributions.
5

9. Discuss Thurstone scaling procedure. 5

10. Suppose a N(, 2) distribution is left truncated at x = A. Find the mean of this distribution. 5

11. (a) Show that the hyper geometric distribution originates as a result of random sampling without
replacement from a finite population.

(b) Show that the cumulative probabilities of a binomial distribution can be expressed as incomplete Beta
functions. 7+8

12. (a) ‘If X and Y are two random variables with correlation coefficient , such that (X, Y) follows bivariate
normal distribution, then X and Y are independent iff  = 0’— prove or disprove.

(b) Let X be a continuous random variable symmetrically distributed about ‘a’. Let Y be another random
variable, such that,
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Let Z = | X – a |, show that Y and Z are independently distributed.

(c) For a normally distributed random variable, show that all odd order central moments are zero.
4+7+4


