2021

MATHEMATICS — GENERAL

Paper – DSE-A-1

(Particle Dynamics)

Full Marks: 65

Candidates are required to give their answers in their own words as far as practicable.

	প্রান্তলিখিত সংখ্যাণ্ডলি পূর্ণমান নির্দেশক								
বহু বিকল্পক নৈৰ্ব্যক্তিক প্ৰশ্নাবলি									
۱ د	নিম্নবি	লখিত	সব প্রশ্নের উত্তর দাও	0		2×20			
	(ক)	ক) একটি কণা সরলরেখা বরাবর $x=rac{1}{2}vt$, গতির নিয়মে চলে, যেখানে v হল t সময়ে বেগ, তাহলে ত্বন f হল							
		(অ)	ধ্রুবক	(আ) $f \propto x$	$(\overline{2}) f \propto -x$	$(\overline{\mathfrak{P}}) \ f \propto 1/x$			
	(খ) নিম্নের কোনটি সঠিক?								
		(অ) Power = Force/velocity			(আ) Power = Force × velocity				
		(\mathfrak{F}) Power = Force × (velocity) ²			(ঈ) None of these ৷				
	(গ) m -ভরবিশিষ্ট একটি বস্তুকণার উপর $m\mu \left(x+rac{a^4}{x^3} ight)$ পরিমাণ কেন্দ্রাভিমুখী বল ক্রিয়া করে। যদি বস্তুকণাটি								
		স্থিরাবস্থা থেকে যাত্রা শুরু করে তবে t সময়ে তার গতিবেগ হবে,							
		(অ)	$\sqrt{\mu} \left(\frac{a^4}{x^2} - x^2 \right)^{1/2}$	(আ) $\sqrt{\mu} \left(\frac{a^4}{x^4} + x^2 \right)^{1/2}$	$(\overline{2}) \ \sqrt{\mu} \left(-\frac{a^4}{x^2} + x^2 \right)^{1/2}$	$(\overline{\mathfrak{A}}) - \sqrt{\mu} \left(\frac{a^4}{x^2} - x^2 \right)^{1/2} +$			
	(ঘ)	যদি <i>I</i> মান ঃ		খায় গতিশীল একটি কণার গ	গতিবেগ u থেকে v তে পরিবতি	র্তত হয়, তবে গতিশক্তি পরিবর্তনের			
		(অ)	$\frac{1}{2}I(u+v)$	(আ) $\frac{1}{2}I(u-v)$	$(\overline{2}) \ 2I(u+v)$	$(\overline{\mathfrak{R}}) \ 2I(u-v)$			
	(&)	(৬) u প্রারম্ভিক বেগে প্রক্ষিপ্ত কোন বস্তুকণার সর্বাধিক অনুভূমিক সীমা হবে,							
		(অ)	$\frac{u}{g}$	(আ) ug	$(\overline{\mathfrak{F}}) \frac{u^2}{g}$	$(\overline{\mathfrak{R}}) \frac{g}{u^2}$			

V(5th Sm.)-Mathematics-G/DSE-A-1/C	(2)					
(চ) যদি কেন্দ্রীয় বলের প্রভাবে সরলভেদে থাকবে	কোন	গতিশীল	কণার	কেন্দ্রীয় কক্ষপথটি	একটি শঙ্কুচ্ছেদ	$\frac{l}{r} = 1 + e \cos \theta$ হয়, তবে বল
(অ) $\frac{1}{r^2}$	(আ)	r^2		$(\overline{\mathfrak{z}}) \frac{1}{r}$		(ঈ) $\frac{1}{r^3}$ -এর সঙ্গে।
(ह) यहि वसी उसक्षा कराव		T-0402	4 030	TOWART TOWARD	W 357 G73 A	GOOD TON ON GOOD TOO

(ছ) যাদ একাট বস্তুকণার ত্বণের আভলম্ব উপাংশ এবং স্পশক উপাংশ সমান হয়, তবে গাতবেগ সমানুপাতিক হবে (অ) ψ

(ই) $e^{2\psi}$ (ঈ) $e^{-\psi}$ -এর সঙ্গে, যেখানে ψ = স্পর্শকের নতি।

(জ) 10,000 গ্রাম ওজনের একটি কামানের গোলা 5000 সে.মি./সেকেন্ড গতিতে ছোঁড়া হলে তার গতিশক্তি আর্গে হবে (অ) 100×10^9 আর্গ (আ) 125×10^9 আর্গ (ই) 200×10^9 আর্গ (ঈ) 25×10^{10} আর্গ।

(ঝ) একটি স্থির বিন্দুমুখী বল, $\frac{\mu}{r^2}$ (প্রতি ভরের এককে), দ্বারা চালিত একটি কণার পথ অধিবৃত্ত হবে যদি

(আ) $V^2 \langle \frac{2\mu}{r}$ (আ) $V^2 = \frac{2\mu}{r}$ (ই) $V^2 \rangle \frac{2\mu}{r}$ (ঈ) $V^2 = \frac{\mu}{r}$ । $V^2 = \frac{\mu}{r}$ । $V^2 = \frac{\mu}{r}$ ।

(এঃ) t কে v-এর আপেক্ষক ধরা হলে, ত্বরণ f-এর হ্রাসের হার হয়

 $(\mathfrak{A}) \quad f^3 \frac{d^2t}{dv^2} \qquad \qquad (\mathfrak{A}) \quad f^2 \frac{d^2t}{dv^2} \qquad \qquad (\mathfrak{F}) \quad f \frac{d^2t}{dv^2} \qquad \qquad (\mathfrak{F}) \quad \frac{d^2t}{dv^2} = (\mathfrak{F}) \quad (\mathfrak{F}) \quad f = (\mathfrak{F}) \quad$

২। *যে-কোনো একটি* প্রশ্নের উত্তর দাও ঃ

(ক) m ভরবিশিষ্ট একটি কণা mn^2x আকর্ষণ বলের অধীনে একটি সরলরেখায় গতিশীল এবং সরলরেখার উপরিস্থ একটি নির্দিষ্ট বিন্দুর দিকে অভিমুখী হয় যেখানে x হল ওই নির্দিষ্ট বিন্দু থেকে দূরত্ব। যদি কণাটি ওই নির্দিষ্ট বিন্দু থেকে প্রারম্ভিক a দূরত্ব থেকে V গতিবেগে বলের কেন্দ্রের অভিমুখে উৎক্ষিপ্ত হয় তবে দেখাও যে, কণাটি বলের কেন্দ্রে $\frac{1}{n} \tan^{-1} \left(\frac{na}{V} \right)$ সময় পরে পৌছবে।

৫×১

(খ) অরীয় বেগ এবং ত্বরণের উপাংশ নির্ণয় করো।

্যে-কোনো পাঁচটি প্রশ্নের উত্তর দাও।

৩। সরলরেখায় গতিশীল একটি কণার উপর ক্রিয়াশীল বলের কার্যের হার ধ্রুবক এবং x দূরত্ব অতিক্রম করতে বলটি কণার গতিবেগকে u থেকে v তে পরিবর্তিত করে। প্রমাণ করো যে ওই দূরত্ব অতিক্রম করতে কণাটির $\dfrac{3(u+v)x}{2\left(u^2+uv+v^2\right)}$ সময় লাগবে। ১০

8। সরল দোলনগতি সম্পন্ন একটি কণার মধ্যবিন্দু থেকে পরপর 3 সেকেন্ডে দূরত্ব যথাক্রমে x,y এবং z হলে দেখাও যে সব পর্যায়কাল

$$\frac{2\pi}{\cos^{-1}\left(\frac{x+z}{2y}\right)}$$

- ৫। একটি কণা উপবৃত্তাকার পথে তার নাভি অভিমুখে প্রতি একক ভরের $\mu/\left(দূরত্ব \right)^2$ বলের অধীনে চলছে। যদি কণাটি বলকেন্দ্র থেকে R দূরত্বে V গতিবেগে উৎক্ষিপ্ত হয় তবে দেখাও যে কণাটির পর্যায়কাল $\dfrac{2\pi}{\sqrt{\mu}} \bigg[\dfrac{2}{R} \dfrac{V^2}{\mu} \bigg]^{-\frac{3}{2}}$ ।
- ঙ। একক ভরের একটি বস্তুকণাকে দিগন্তের উপরে α কোণে V বেগে প্রক্ষিপ্ত করা হল যে মাধ্যমে তার বাধা বস্তুকণার গতিবেগের k গুণ। প্রমাণ করো যে $\frac{1}{k}\log\left(1+\frac{kV}{g}\tan\frac{\alpha}{2}\right)$ সময় পরে বস্তুকণাটির বেগের অভিমুখ দিগন্তের উপর $\frac{\alpha}{2}$ কোণ উৎপন্ন করবে।
- ৭। যদি কোনো গ্রহ তার বৃত্তাকার কক্ষপথের কোনো এক জায়গায় হঠাৎ থেমে যায় তবে প্রমাণ করো যে গ্রহটি যে সময়ে সূর্যের উপর পতিত হবে তা গ্রহটির আবর্তকালের $\frac{\sqrt{2}}{8}$ গুণ।
- ৮। একটি বস্তুকণা একটি পথে ধাবমান যেখানে ত্বরণ $\frac{\mu}{y^3}$, যা সব সময় Y-অক্ষের সমান্তরাল এবং X-অক্ষের অভিমুখী। যদি ওই বস্তু কণাটিকে (0,a) বিন্দু হতে X-অক্ষের সমান্তরাল দিকে $\frac{\sqrt{\mu}}{a}$ বেগে ছোড়া হয় তবে দেখাও যে বস্তুকণাটির গতিপথ একটি বৃত্ত হবে।
- ঠ। একটি ঋজু মসৃণ নল ω কৌণিক গতিবেগে আবর্তিত হয়, নলটির দৈর্ঘ্যের উপর অবস্থিত একটি বিন্দু O-এর সাপেক্ষে। O অভিমুখী একটি বল $m\mu$ (দূরত্ব)-এর প্রভাবে ওই নলের মধ্যে দিয়ে বিশ্রাম অবস্থায় থাকা একটি কণা পতনশীল হয়। দেখাও যে কণাটির যাত্রাপথের সমীকরণ হল $r=a\cos h\left(\sqrt{\frac{\omega^2-\mu}{\omega^2}}\;\theta\right)$ অথবা $r=a\cos\left(\sqrt{\frac{\mu-\omega^2}{\omega^2}}\;\theta\right)$, যখন $\mu \geqslant \omega^2$ । $\mu=\omega^2$ হলে দেখাও যে যাত্রাপথটি বৃত্তাকার হবে।
- ১০। (ক) কেপলারের তৃতীয় সূত্রটি লেখো।
 - (খ) কেন্দ্রীয় বল F (প্রতি একক ভরে) অধীনে গতিশীল একটি বস্তুর ক্ষেত্রে দেখাও যে $\frac{h^2}{p^3} \frac{dp}{dr} = F$ । (প্রতীকগুলি স্বাভাবিক অর্থবহ)

Please Turn Over

1. Answer *all* the questions:

(i) constant

(b) Which of the following is correct?

(i) Power = Force/velocity

(iii) Power = Force \times (velocity)²

[English Version]

The figures in the margin indicate full marks.

Multiple Choice Questions.

 $x = \frac{1}{2}vt$, where v is the velocity at the time t, then acceleration f is

(ii) $f \propto x$

(a) If a particle moves in a straight line and the distance x from the fixed point at any time t is

(iii) $f \propto -x$

(ii) Power = Force \times velocity

(iv) None of these.

 1×10

(iv) $f \propto 1/x$.

(c)	A pa	article of mass m is	acted on by force mp	$\int dx +$	$\left(\frac{a^4}{x^3}\right)$ towards the or	igin. If it starts from rest at
	a dis	stance a, then its vel	ocity at time t		,	
	(i)	$\sqrt{\mu} \left(\frac{a^4}{x^2} - x^2 \right)^{1/2}$	(ii) $\sqrt{\mu} \left(\frac{a^4}{x^4} + x^2 \right)^{1/2}$	(iii)	$\sqrt{\mu} \left(-\frac{a^4}{x^2} + x^2 \right)^{1/2}$	(iv) $-\sqrt{\mu} \left(\frac{a^4}{x^2} - x^2 \right)^{1/2}$.
(d)		a rectilinear motion nge in Kinetic energy		mpu]	lse I changes its ve	locity from u to v , then the
	(i)	$\frac{1}{2}I(u+v)$	(ii) $\frac{1}{2}I(u-v)$	(iii)	2I(u+v)	(iv) $2I(u - v)$.
(e)	The 1	maximum horizontal	range of a particle w	ith ir	nitial velocity u is gi	ven by
	(i)	$\frac{u}{g}$	(ii) ug	(iii)	$\frac{u^2}{g}$	(iv) $\frac{g}{u^2}$.
(f)			ibed by a particle mo	oving	under central force	is the conic $\frac{l}{r} = 1 + e \cos \theta$,
	then	the force varies as				
	(i)	$\frac{1}{r^2}$	(ii) <i>r</i> ²	(iii)	$\frac{1}{r}$	(iv) $\frac{1}{r^3}$.
(g)	If the	e tangential and norm	nal components of acc	elera	tion be equal, then th	ne velocity is proportional to
	(i)	Ψ	(ii) e ^ψ	(iii)	$e^{2\psi}$	(iv) $e^{-\psi}$.
	whe	re tan ψ = slope of	the tangent.			

- (h) The kinetic energy in ergs of a cannon ball of 10,000 grammes discharged with a velocity of 5000 cm/second is
 - (i) 100×10^9 ergs
- (ii) 125×10^9 ergs (iii) 200×10^9 ergs
- (iv) 25×10^{10} ergs.
- (i) A particle moves under a force which is always directed towards a fixed point and is equal to $\frac{\mu}{...2}$ per unit mass, then its path will be a hyperbola if
- (i) $V^2 \langle \frac{2\mu}{r}$ (ii) $V^2 = \frac{2\mu}{r}$ (iii) $V^2 \rangle \frac{2\mu}{r}$ (iv) $V^2 = \frac{\mu}{r}$

(V is the initial velocity)

- (j) If t be regarded as a function of velocity v, then the rate of decrease of acceleration f is
 - (i) $f^3 \frac{d^2t}{dv^2}$
- (ii) $f^2 \frac{d^2t}{dv^2}$ (iii) $f \frac{d^2t}{dv^2}$ (iv) $\frac{d^2t}{dv^2}$

2. Answer any one from the following:

- 5×1
- (a) A particle of mass m moves in a straight line under an attractive force mn^2x towards a fixed point on the line when at a distance x from it. If it be projected with a velocity V towards the centre of force from an initial distance a then prove that it reaches the centre of force after a time

$$\frac{1}{n}\tan^{-1}\left(\frac{na}{V}\right).$$

(b) Deduce expressions for radial velocity and radial accelerations.

Answer any five questions.

- 3. A particle moving in a straight line is acted on by a force which works at a constant rate and changes its velocity from u to v in passing over a distance x. Prove that the time taken is $\frac{3(u+v)x}{2(u^2+uv+v^2)}$. 10
- 4. In an SHM the distance of a particle from the middle point its path at three consecutive seconds are x, y, z respectively. Show that the time period is $\frac{2\pi}{\cos^{-1}\left(\frac{x+z}{2y}\right)}$. 10
- 5. A particle describes an ellipse under a force $\mu/(distance)^2$ towards a forces. If it was projected with a velocity V from a point distant R from the centre of force, then show that the periodic time is 10

$$\frac{2\pi}{\sqrt{\mu}} \left[\frac{2}{R} - \frac{V^2}{\mu} \right]^{-\frac{3}{2}}$$

Please Turn Over

V(5th Sm.)-Mathematics-G/DSE-A-1/CBCS

(6)

6. A particle of unit mass is projected with a velocity V at an angle α above the horizon in a medium whose resistance is k times the velocity of the particle. Prove that the direction of its velocity will make

an angle
$$\frac{\alpha}{2}$$
 above the horizon after a time $\frac{1}{k} \log \left(1 + \frac{kV}{g} \tan \frac{\alpha}{2} \right)$.

- 7. If a planet was suddenly stopped in its orbit supposed circular then prove that it would fall into the Sun in a time which is $\frac{\sqrt{2}}{8}$ times the period of the planet's revolution.
- 8. A particle describes a path with an acceleration $\frac{\mu}{y^3}$ which is always parallel to the axis of Y and directed towards the X-axis. If the particle be projected from a point (0, a) with the velocity $\frac{\sqrt{\mu}}{a}$ parallel to X-axis, show that the path described is a circle.
- 9. A particle falls from rest within a straight smooth tube which is revolving with uniform angular velocity ω about a point O in its length, being acted on by a force equal to $m\mu$ (distance) towards O. Show that

the equation to its path in space is
$$r = a \cos h \left(\sqrt{\frac{\omega^2 - \mu}{\omega^2}} \theta \right)$$
, or, $r = a \cos \left(\sqrt{\frac{\mu - \omega^2}{\omega^2}} \theta \right)$ according as $\mu \ge \omega^2$. If $\mu = \omega^2$, show that the path is a circular.

- 10. (a) Write down Kepler's third Law.
 - (b) Establish the relation $\frac{h^2}{p^3} \frac{dp}{dr} = F$ for a central orbit under an attractive force F per unit mass. [Symbols have their usual meaning]