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1. (a) Using linear stability analysis, classify the fixed point(s) for the system
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(b) Sketch qualitatively the vector fields for ẋ = r x − 4x3, as the parameter r is varied.
Identify the type of bifurcation and sketch the bifurcation diagram. For cases where the
origin is the only fixed point, estimate the rate of decay towards the origin.

(c) Find the nature of the fixed point at the origin and plot nearby phase trajectories for
the linear system(
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2. (a) Explain the terms (i) globally stable, (ii) Liapunov stable and (iii) asymptotically stable
in reference to a fixed point x∗ of a system ẋ = f(x). Illustrate each by means of an
example.

(b) For the system ẍ + 2 ε ẋ + x = 0, where ε << 1,

i. identify the fixed point(s) and its(their) nature.

ii. make a schematic phase plot for the system in the vicinity of the fixed point(s).

iii. obtain the exact solution x(t), for the initial conditions x(0) = 0 and ẋ(0) = 1.

4+(2+1+3)

3. (a) State the Poincare-Bendixson theorem in your own words.

(b) Express the system

ẋ = −y + x(1 − x2 − y2)

ẏ = x+ y(1 − x2 − y2) ,

in polar coordinates. Show, using schematic figures where needed, that trajectories are
trapped in a region 0.5 < r < 2, where r2 = x2 + y2.

(c) The van der Pol oscillator is described by

ẍ + µ (x2 − 1) ẋ + x = 0 .

i. In the strong nonlinear limit, µ >> 1, make a suitable choice of variables to identify
the nullclines of the system and plot them on a phase plot.

ii. On the same phase plot as obtained above, plot a typical trajectory of the system.
Identify the path(s) corresponding to different time scales.

iii. Estimate the time period of oscillation, clearly showing the intermediate calculations.

2+3+(1+1+3)



4. (a) Consider the system given by

ẋ = µx− y − (x2 + y2)x

ẏ = x+ µ y − (x2 + y2) y,

where µ is a parameter. Linearize the system and find the Jacobian matrix at the origin.
Show that a Hopf bifurcation results as µ is varied.

(b) Express the above system in polar coordinates and show the different phase plots as µ is
changed.

(c) For the map xn+1 = 3.42xn(1 − xn), how many fixed points or cycles will exist, and what
will be their nature? 3+3+4

5. (a) Generate a fractal called Sierpinski triangle, with the following prescription: Start with an
equilateral triangle S0 of unit area. Divide it into four smaller congruent equilateral triangles
and remove the central triangle to get S1. Repeat the last step with each of the remaining
smaller triangles. What will be the area of the set Sk, and what will be the similarity dimen-
sion for the limiting set S∞?

(b) Consider the map xn+1 = a sinxn. Locate the fixed points of this map and analyse their
stability for (i) a = π/6 and (ii) a = π/3. 4+6

6. (a) For the map

xn+1 = ayn + xn − x2n
yn+1 = xn

find the fixed points and analyse their stability for (i) a = 1
3

and (ii) a = −1
8
.

(b) Consider the synchronisation of fireflies with external light. Write the equation for the
phase of the fireflies. Derive the nature of synchronisation when the natural frequency of
fireflies and the frequency of the external light are (i) equal, and (ii) unequal. 6+4

7. (a) Consider the dynamics of a point (x, y) described by the equations

dx

dt
= x2 − y2,

dy

dt
= xy − 4.

Locate the fixed points and analyse their stability.



(b) Explain briefly how is the phenomenon of chemical oscillation consistent with the second
law of thermodynamics.

(c) In the space spanned by the variables (X, Y, Z) consider the set of points enclosed in a
volume V0 at time t = 0. Each point evolves according to the equations

Ẋ = −X + Y Z

Ẏ = −Y + ZX

Ż = 1 −XY.

Find the volume V (t) which the points will occupy at time t. 5+2+3


