CHEMISTRY - HONOURS

Paper: CC-10
(Inorganic Chemistry)
Full Marks: 50

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words
as far as practicable

Answer question no. 1 and any eight questions from the rest.

1. Answer any ten questions:
(a) Find out the electronic state of an ion with ${ }^{3} \mathrm{~F}_{4}$ ground term.
(b) Cite an example of tetragonally compressed molecule.
(c) What would be spin only magnetic moment of Mn^{3+} in $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$?
(d) Show the Scheme of preparation of cis- $\mathrm{PtCl}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)$ from $\left[\mathrm{PtCl}_{4}\right]^{2-}$.
(e) Account for the dark red colour of $\left[\mathrm{Fe}(\text { bipy })_{3}\right]^{2+}$ (bipy $=$ bipyridine).
(f) Identify the metal ion(s) able to show Jahn-Teller effect in their high spin state : $\mathrm{Cr}(\mathrm{II}), \mathrm{Fe}(\mathrm{II}), \mathrm{Ni}(\mathrm{II}) . \mathrm{Mn}(\mathrm{IV}), \mathrm{Mn}(\mathrm{III})$
(g) Identify the transition(s) which are not allowed according to selection rule:

$$
2 \mathrm{~s} \rightarrow 2 \text { p. } 3 \mathrm{p} \rightarrow 3 \text { d. } 2 \mathrm{~s} \rightarrow 3 \text { p. } 3 \mathrm{~s} \rightarrow 3 \mathrm{~d} .1 \mathrm{~s} \rightarrow 2 \mathrm{~s} .
$$

(h) Find out the number of unpaired electron(s) in $\mathrm{Gd}(==64)$.
(i) Arrange the following ligands in a spectrochemical series: $\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{~F}^{-}, \mathrm{OH}^{-} \cdot \mathrm{CN}^{-}, \mathrm{CO}$
(i) State ground state term for Fe^{2-}.
(k) Mention the M^{2+} ion in 3 d-transition series, that possesses minimum ionic radius value in low spin state.
(1) Give the structure of the complex ' A '. $\left[\mathrm{Pt}(\mathrm{Cl})_{3}\left(\mathrm{NO}_{2}\right)\right]^{2-} \xrightarrow{\mathrm{NO}^{-}} \mathrm{A}$.
2. (a) Using Orgel diagram, explain the possible transitions of $\left[\mathrm{Cr}_{(}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3-}$ complex. Which transition corresponds to 10 Dq value?
(b) Explain the order of LMCT transition energies : $\mathrm{MnO}_{4}^{-}<\mathrm{TcO}_{4}^{-}<\mathrm{ReO}_{4}^{-}$.
3. (a) $\mathrm{Pd}(\mathrm{II})$ and $\mathrm{P}(\mathrm{II})$ form square planar complexes exclusively but $\mathrm{Ni}(\mathrm{II})$ forms square planar complexes under certain condition. Explain.
(b) Δ_{0} for three hexaamines differs as follows:
$\left|\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right|^{3-}=23000 \mathrm{~cm}^{-1}$
$\left|\mathrm{Rh}\left(\mathrm{NH}_{3}\right)_{6}\right|^{3-}=34000 \mathrm{~cm}^{-1}$
$\left|\operatorname{lr}\left(\mathrm{NH}_{3}\right)_{6}\right|^{3-}=41000 \mathrm{~cm}^{-1}$
Identify the factor(s) involved for this difference.
4. (a) 10 Dq for $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3-}$ is known from electronic spectrum as $21000 \mathrm{~cm}^{-1}$. The pairing energy of $\mathrm{Mn}(\mathrm{III})$ is $28800 \mathrm{~cm}^{-1}$. Predict whether the complex is high spin or low spin and also calculate the CFSE value.
(b) $\mathrm{Cr}(\mathrm{II})$ acetate monohydrate is diamagnetic. Explain.
5. (a) How will you separate lanthanides using ion-exchange methodology?
(b) Estimation of activation energy for aquation reaction of octahedral Co (III) and Cr (III) complexes indicates that a pentagonal bipyramid intermediate path is followed by $\mathrm{Cr}(\mathrm{III})$. while for Co (III) the intermediate is a square pyramid. Comment on their mechanistic path. 3-2
6. (a) Addition of concentrated HCl to pale pink $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ changes its colour to blue but similar addition to $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ has no effect. Justify this from the point of OSSE.
(b) Explain the exceptional stability of +2 oxidation state of $\mathrm{Eu}(z=63)$ and $\mathrm{Yb}(z=70)$. 3+2
7. (a) Lanthanides show poor tendency to form complexes with π acid ligands while the same is greater for actinides. Explain.
(b) In high spin octahedral and tetrahedral complexes of Co (II) three unpaired electrons are present: but magnetic moment for the octahedral complexes are 4.8-5.2 BM whereas for tetrahedral it is 4.2-4.8 BM.- Explain. 3-2
8. (a) Expiain mechanistically the high substitution rate for square pianar platinum (II) complexes in presence of a π-acid ligand.
(b) Between two redox couples, $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+} /\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2-}$ and $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} /\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2-}$. which one is more oxidizing and why? Explain on the basis of CFT.
9. (a) Actinides show variety of oxidation states while lanthanides exhibit uniform (+3) oxidation state. Why is it so?
(b) $\mathrm{Fe}^{3-}(\mathrm{aq})$ reacts rapidly with EDTA at room temperature, while $\mathrm{Cr}^{3+}(\mathrm{aq})$ reacts slowly. Comment.
10. (a) What is lanthanide contraction? Explain why Zr and Hf have similar properties although they beiong to different periods.
(b) Explain the variation of hydration energy of M^{2-} ion in 3d transition series. - 2
11. (a) Both the metal ions in $\mathrm{K}_{3}\left[\mathrm{CuF}_{6}\right]$ and $\left.\mathrm{K} \mid \mathrm{AgF}_{4}\right]$ possess d^{8} electronic configuration but one is paramagnetic and the other is diamagnetic. Identify them with justification.
(b) Predict the colour of the complex $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{5-}\left[\right.$ Given $\left.\Delta_{0}=20,000 \mathrm{~cm}^{-1}\right]$.
$3+2$
12. (a) Explain the abrupt drop of $\log _{2} \mathrm{k}_{3}$ value in the complexation of $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2-}$ with ethylenediamine at $30^{\circ} \mathrm{C}$.
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2-}+\mathrm{en}=\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{en}^{2-}\right]^{2-}+2 \mathrm{H}_{2} \mathrm{O} \quad \log \mathrm{k}_{1}=10.72$
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{en}\right]^{2-}+\mathrm{en}=\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{en})_{2}\right]^{2-}+2 \mathrm{H}_{2} \mathrm{O} \quad \log \mathrm{h}_{2}=9.31$
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{en})_{2}\right]^{2-}+\mathrm{en}=\left[\mathrm{Cu}(\mathrm{en})_{3}\right]^{2-}+2 \mathrm{H}_{2} \mathrm{O} \log \mathrm{k}_{3}=-0.90$
(h) Establish the structure of $\mathrm{NiFe}_{2} \mathrm{O}_{4}$ and $\mathrm{Mn}_{3} \mathrm{O}_{4}$ as normal or inverse spinel.
13. (a) Justify the distorted octahedral structure of $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{ClO}_{4}\right)_{2}$
(b) Explain antiferromagnetism through superexchange using a suitable example.

