2021

STATISTICS - HONOURS

Third Paper
(Group - B)
Full Marks : 50
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Section - I

Answer any two from question nos. 1-4 and one from question nos. 5 and 6.

1. Let $U_{(1)}, U_{(2)}, \ldots, U_{(n)}$ be the order statistics of a sample of size n from $U(0,1)$. Show that

$$
\begin{equation*}
E\left(U_{(r)}\right)=\frac{r}{n+1} \text { and } \operatorname{Var}\left(U_{(r)}\right)=\frac{r(n-r+1)}{(n+1)^{2}(n+2)} . \tag{5}
\end{equation*}
$$

2. Show that sample mean and sample variance are independently distributed when iid sample units are drawn from $N\left(\mu, \sigma^{2}\right)$.
3. If X, X_{2}, \ldots, X_{n} be iid random observations from $N(0,1)$ and $S_{n}=\sum_{i=1}^{n} X_{i}^{2}$, then show $S_{n} \sim \chi_{n}^{2}$.
4. Define t distribution with n degrees of freedom. Write down its properties.
5. (a) X and Y be two independent normal variables with zero means. Show that $U=\frac{X Y}{\sqrt{X^{2}+Y^{2}}}$ is normal. If $\operatorname{var}(X)=\operatorname{var}(Y)$, show that $V=\frac{X^{2}-Y^{2}}{\sqrt{X^{2}+Y^{2}}}$ is also normal. Moreover, show that U and V are independent.
(b) Derive the sampling distribution of the sample regression coefficient of any one of the variables on the other, based on a random sample of given size from the $N_{2}\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, 0\right)$ distribution.
6. (a) Let X and Y be iid $N(0,1)$ random variables. Find the p.d.f. of $\frac{X}{|Y|}$ and also of $\frac{|X|}{|Y|}$.
(b) Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid $N\left(\mu, \sigma^{2}\right)$ random variables. Find the distribution of $Y_{n}=\frac{\sum_{k=1}^{n} k X_{k}-\mu \sum_{k=1}^{n} k}{\left(\sum_{k=1}^{n} k^{2}\right)^{1 / 2}}$.
(c) Derive the distribution of the sample range of a random sample of given size n from the following p.d.f. $f(x)=\left\{\begin{array}{l}e^{-x} ; x>0 \\ 0 ; \text { otherwise }\end{array}\right.$.

Section - II

Answer any two from question nos. 7-10 and one from question nos. 11 and 12.
7. Suppose X_{i} 's $(i=1,2, \ldots, n)$ are independent with common mean μ and respective variance $\sigma_{i}{ }^{2}$. Find the BLUE of μ and its variance.
8. State Cramer-Rao inequality with regularity conditions. State the condition for equality.
9. Write a short note on minimum Chi-square method of estimation.
10. Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid random variables with $E\left(X_{i}\right)=\mu$ and $E\left|X_{i}\right|^{2}<\infty$. Show that $T\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\frac{2}{n(n+1)} \sum_{i=1}^{n} i X_{i}$ is consistent estimator for μ.
11. (a) Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid with p.d.f. $f_{\theta}(X)=\exp [-(x-\theta)], x>\theta$. Consider the class of estimators $T\left(X_{1}, X_{2}, \ldots, X_{n}\right)=X_{(1)}+b, \mathrm{~b} \in \mathbb{R}$. Show that the estimator that has smallest MSE in the class is given by $T(\underset{\sim}{X})=X_{(1)}-\frac{1}{n}$.
(b) State and prove factorization theorem for discrete case.
(c) If $X_{1}, X_{2} \underset{\sim}{\text { iid }} P(\lambda)$, show that $X_{1}+2 X_{2}$ is not sufficient for λ.
12. (a) State Rao-Blackwell theorem.
(b) Let $X_{1}, X_{2}, \ldots, X_{n}(n \geq 2)$ be a sample from Bernoulli (p). Find an unbiased estimator for p^{2}.
(c) Let $X \sim P(\lambda)$. Does there exist an unbiased estimator for $\frac{1}{\lambda}$?
(d) Find a sufficient statistic of $\theta \in \underset{(H)}{ }=(0, \infty)$ for $U(-\theta, \theta)$ distribution. Justify whether it is consistent or not.
$3+3+3+6$

