2019

PHYSICS

Module : PHY-422

(Quantum Mechanics-II)

Full Marks : 50
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Symbols have their usual meanings.

Answer any five questions.

1. (a) A particle which is initially $(t=0)$ in the ground state of an infinite one dimensional potential box with walls at $x=0$ to $x=a$ is subjected to a perturbation $V(t)=x^{2} \exp (-t / \tau)$ [τ is a constant] during the time interval $0 \leq t \leq \infty$. Calculate up to first order, probability of finding the particle in its first excited state at some time t. [For a particle in an infinite one dimensional potential well the energy eigenvalue E_{n} and wavefunction $\psi_{n}(x)$ are as follows : $E_{n}=\left(n^{2} \pi^{2} \hbar^{2} / 2 m a^{2}\right)$ and $\psi_{n}(x)=(2 / a)^{1 / 2} \sin (n \pi x / a)$; where n is the quantum number and m is the mass of the particle]
(b) A particle is in the ground state of a one dimensional harmonic oscillator potential. At $t=0$, a perturbation $V(x, t)=V_{0} x^{3} \exp (-t / \tau)$ is turned on, where $x=(\hbar / 2 m \omega)^{1 / 2}\left(\hat{a}+\hat{a}^{\dagger}\right)$ with \hat{a} and \hat{a}^{\dagger} are annihilation and creation operators. Calculate up to first order, probability that, after a sufficiently long time $(t \rightarrow \infty)$, the system will have made a transition to any excited state.
2. (a) Consider a system of three non-interacting identical spin $\frac{1}{2}$ particles that are in the same spin state $\left|\frac{1}{2}, \frac{1}{2}\right\rangle$ and confined to move in a one dimensional infinite potential well of length $a ; V(x)=0$ for $0<x<a$ and $V(x)=\infty$ for other values of x. Determine the energy and wave function of the ground state, first excited state and second excited state.
(b) A proton of energy E is incident on a nucleus of charge $Z e$. Using the WKB approximation, estimate the transmission coefficient associated with the penetration of the proton inside the nucleus. $5+5$
3. (a) In case of elastic scattering between two non-relativistic spinless particles, show that the total scattered wave function is

$$
\psi(\mathbf{r})=\psi_{i n c}(\mathbf{r})-\frac{\mu}{2 \pi \hbar^{2}} \int \frac{e^{i \boldsymbol{k}\left|r-r^{\prime}\right|}}{\left|r-r^{\prime}\right|} V\left(r^{\prime}\right) \psi\left(\mathbf{r}^{\prime}\right) d^{3} r^{\prime}
$$

where, μ is the reduced mass and the interaction between the particles depends only on their relative distance.
(given. $\oint \frac{f(z)}{z-z_{0}} d z=2 \pi i f\left(z_{0}\right)$ where $f(z)$ is an analytic function of z.
(b) Using Born approximation, find the differential scattering cross-section for the Yukawa potential

$$
V(r)=V_{0} \frac{e^{-\lambda r}}{r}
$$

where λ is a constant. Obtain the Rutherford cross-section fomula as a limit of the above result.
(c) Calculate the total cross-section.
4. (a) For a spherically symmetric scattering potential, using partial wave analysis, establish that the total elastic scattering cross-section is given by

$$
\sigma_{e l}=\frac{4 \pi}{k^{2}} \sum_{l}(2 l+1) \sin ^{2} \delta_{l}
$$

(b) Find the s-wave phase shift, as a function of wave number k, for a spherically symmetric potential which is infinitely repulsive inside a radius r_{0} and vanishes outside r_{0}.
(c) Under what condition can a transformation be regarded as a symmetry? If the time evolution operator $\mathcal{U}\left(t, t_{0}\right)$ is defined as $|\psi(t)\rangle=\mathcal{U}\left(t, t_{0}\right)\left|\psi\left(t_{0}\right)\right\rangle$, express $\mathcal{U}\left(t, t_{0}\right)$ in terms of the Hamiltonian operator.

$$
3+3+4
$$

5. (a) The sign operator (\wedge) is defined as $\wedge=H_{f} /\left(c^{2} p^{2}+m_{0}^{2} c^{4}\right)^{1 / 2}$, where H_{f} is the free Dirac Hamiltonian and p is the momentum.
The projection operator $\left(\wedge_{ \pm}\right)$is defined as $\left(\wedge_{ \pm}\right)=\frac{1}{2}(1 \pm \wedge)$ with properties as follows :

$$
\wedge_{+} \Psi_{+}=\Psi_{+} ; \wedge_{-} \Psi_{+}=0 ; \wedge_{+} \Psi_{-}=0 ; \wedge_{-} \Psi_{-}=\Psi_{-} \text {where } \Psi_{+} \text {and } \Psi_{-} \text {are }
$$

wavefunctions corresponding to positive and negative energy states respectively.
Now any operator can be written as $A=[A]+\{A\}$, where $[A]$ and $\{A\}$ are the even and odd parts of the operator A respectively. Show that $[A]=(1 / 2)(A+\Lambda A \wedge)$ and $\{A\}=(1 / 2)(A-\triangle \cdot A \wedge$. Hence show that H_{f} and p are even operators. If α and β are respective matrices of the Dirac Hamiltonian, show that the even part of β is

$$
[\beta]=\left(m_{0} c^{2}\right) N /\left(c^{2} p^{2}+m_{0}^{2} c^{4}\right)^{1 / 2}
$$

Hence write down the even part of α i.c. $|\alpha|$.
(b) Consider the matrix γ_{s}, defined as $\gamma_{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$.

Show that (i) $\gamma_{c}{ }^{+}=\gamma_{5}$. (ii) $\gamma_{5}^{2}=\mathbf{1}$, (iii) $\gamma^{\mu} \gamma_{5}+\gamma_{5} \gamma^{\mu}=0$ for all μ.
6. (a) Starting from the formula $D(R) T_{q}^{k} D^{\dagger}(R)=\sum_{q^{\prime}=-k}^{k} D_{q q^{\prime}}^{k}(R) T_{q^{\prime}}^{k}$, symbols having their usual meanings, find $\left[J_{z}, T_{q}^{k}\right]$ and $\left[J_{ \pm}, T_{q}^{k}\right]$.
(b) Define an anti-linear operator. Prove that for a Hamiltonian invariant under time reversal operation, the energy eigenfunctions can be taken to be real in the non-degenerate case.
7. (a) Transformation of the Dirac spinor under Lorentz transformation is $\psi^{\prime}\left(x^{\prime}\right)=S(\Lambda) \psi(x)$ where Λ_{v}^{μ} is the Lorentz transformation matrix, $x^{\mu \mu}=\Lambda_{v}^{\mu} x^{\nu} . \Lambda_{v}^{\mu} \gamma^{\nu}=S^{-1}(\Lambda) \gamma^{\mu} S(\Lambda)$ is the condition on S to keep Dirac equation, $\left(i \partial_{\mu} \gamma^{\mu}-m\right) \psi=0$, covariant under Lorentz transformation. Show that
(i) $S^{-1}=\gamma^{0} S^{\dagger} \gamma^{0}$
(ii) $\bar{v}^{\prime}=\bar{\psi} S^{-1}$
(iii) $\bar{\psi} \gamma^{\mu} \psi$ is a Lorentz four vector.
(b) Derive the conjugate form of Dirac equation. Show that $j^{\mu}=\bar{\psi} \gamma^{\mu} \psi$ is the conserved current, $\partial_{\mu} j^{\mu}=0$.

