ADVANCED BUSINESS MATHEMATICS - HONOURS

Paper : DSE-5.1A

(Module - II)
Full Marks : 40
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer any four questions.

1. (a) Evaluate: $\lim _{x \rightarrow 2} \frac{2 x^{2}-7 x+6}{3 x^{2}-7 x+2}$
(b) A function $f(x)$ is defined as follows : $f(x)= \begin{cases}2 x-1, & \text { if } x<2 \\ k, & \text { if } x=2 \\ m-x, & \text { if } x>2\end{cases}$ Find the values of k and m if $f(x)$ is continuous at $x=2$.
2. (a) Express the following in a single matrix : $\left[\begin{array}{cc}2 & -1 \\ 3 & 4 \\ 5 & 0\end{array}\right]\left[\begin{array}{ccc}-1 & 0 & 5 \\ 1 & 2 & -3\end{array}\right]+\left[\begin{array}{rrr}1 & 3 & 5 \\ 2 & 4 & 7 \\ 3 & 5 & -2\end{array}\right]$
(b) Prove that $\left|\begin{array}{ccc}a-b-c & 2 a & 2 a \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b\end{array}\right|=(a+b+c)^{3}$.
3. (a) Evaluate : $\int \frac{x d x}{(x+1)^{2}}$
(b) If $x=\frac{1-t}{1+t}$ and $y=\frac{2 t}{1+t}$, then show that $\frac{d^{2} y}{d x^{2}}=0$.
4. (a) Evaluate : $\int \frac{3 x}{(x+1)(x-2)} d x$
(b) Evaluate : $\int \frac{d x}{(x-3) \sqrt{x+1}}$
5. (a) Find the area bounded by the parabola $y=x(4-x)$ and the x-axis.
(b) For a certain establishment, the total cost function C and the total revenue function R are given by $C(x)=x^{3}-12 x^{2}+48 x+11$ and $R(x)=83 x-4 x^{2}-21$, where $x=$ output. Obtain the output level for which the profit is maximum and find the maximum profit.
6. (a) If $y=f(x)=\frac{3 x-5}{2 x-m}$ and $f(y)=x$, find the value of m.
(b) If the demand function be $p=40-\frac{5}{2} q$, find the marginal revenue when the level of output q is 7 .
7. (a) If $A=\left[\begin{array}{rrr}-1 & 3 & 5 \\ 1 & -3 & -5 \\ -1 & 3 & 5\end{array}\right]$, show that $A^{2}=A$. Hence find the matrix B, which statisfies the relation $3 A^{2}-2 A+B=I_{3}$, where I_{3} is the identity matrix of order 3 .
(b) Prove that $\left|\begin{array}{ccc}1+a_{1} & 1 & 1 \\ 1 & 1+a_{2} & 1 \\ 1 & 1 & 1+a_{3}\end{array}\right|=a_{1} a_{2} a_{3}\left(1+\frac{1}{a_{1}}+\frac{1}{a_{2}}+\frac{1}{a_{3}}\right)$
8. (a) Solve by Cramer's Rule :

$$
x+y+z=1, a x+b y+c z=k, a^{2} x+b^{2} y+c^{2} z=k^{2}, \text { given } a \neq b \neq c .
$$

(b) If $A^{-1}=\left[\begin{array}{rrr}2 & 5 & 3 \\ 3 & 1 & 2 \\ 1 & 2 & -1\end{array}\right]$, find A.

