2022

STATISTICS - HONOURS

Paper : CC-3

(Mathematical Analysis)

(Unit-1 to 4)
Full Marks : 65
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

1. Answer any ten questions. If you answer more than ten, then only the first ten attempted will be checked.
(a) Let x and y be two real numbers such that $0 \leq x \leq y$. Furthermore if it is given that $0 \leq y<\epsilon$ for every $\epsilon>0$, show that $x=y=0$.
(b) Find all the rational numbers x that satisfy the inequality $|x-2| \leq x+1$. Write your solution in the form of a set.
(c) Find the supremum of the set $A=\{x \in \mathbb{R} \mid x>2 / x, x \neq 0\}$.
(d) Give examples of the following :
(i) A convergent sequence with a monotonically increasing, and a monotonically decreasing, subsequences.
(ii) A divergent sequence having a convergent, and another divergent, subsequences.
(e) Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be two sequences of real numbers such that $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\infty$. Provide examples of the following situations :
(i) $\left\{a_{n}\right\}$ is bounded and $b_{n}>0 \forall n \geq 1$.
(ii) $\left\{b_{n}\right\}$ diverges to infinity and $a_{n}>0 \forall n \geq 1$.
(f) Let $\left\{a_{n}\right\}$ be a sequence of real numbers such that $a_{n+1}=\sqrt{a_{n}+1}, n \geq 1$ with $a_{1}=1$. Check whether the sequence is convergent.
(g) Let $\left\{a_{n}\right\}$ be a sequence of real numbers and $M \geq 1$ be any integer. Show that the series $\sum_{n=1}^{\infty} a_{n}$ converges if and only if the series $\sum_{n=1}^{\infty} a_{M+n}$ converges.
(h) Does the series $\sum_{n=1}^{\infty} \ln \left(\frac{n+1}{n}\right)$ converge? Justify.
(i) Suppose both the series $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are absolutely convergent. Show that the series $\sum_{n=1}^{\infty} a_{n} b_{n}$ is also absolutely convergent.
(j) Prove that $\lim _{x \rightarrow 0} \cos (1 / x)$ does not exist but that $\lim _{x \rightarrow 0} x \cos (1 / x)=0$.
(k) Write the sequential definition of limit of a function.
(l) Consider a function :

$$
f(x)= \begin{cases}x^{2}-6 x, & \text { if } x \in(0,6) \\ 10, & \text { if } x=7\end{cases}
$$

Check the continuity of the function at $x=7$.
(m) Using Taylor's Theorem show that $e^{\pi}>\pi^{e}$.
(n) Discuss the use of polar transformation in double integration with an example.
(o) Consider the function $f(x, y)=y^{2}-x^{2},(x, y) \in \mathbb{R}^{2}$. Does there exist any extremum of the function?
2. Answer any three questions:
(a) Define maximum and minimum of a set. Show that the set $A=(0,1)$ does not have a maximum.
(b) State and prove Monotone Convergence Theorem for a sequence of real numbers.
(c) 'Root test is more powerful than ratio test'. - Justify the statement with an example. 5
(d) Define continuity and uniform continuity of a function. If a function $f:[a, b] \rightarrow \mathbb{R}$ is continuous then show that it is bounded on $[a, b]$.
(e) Evaluate :

$$
\int_{\mathcal{D}} x y d x d y
$$

where $\mathcal{D}=\left\{(x, y): a x^{2}+b y^{2}+2 h x y \leq c^{2}\right\}$ with a, b, h and c real numbers such that $a>0, c>0$ and $\left(a b-h^{2}\right)>0$.
3. Answer any three questions:
(a) (i) Prove that between any two real numbers there are infinitely many irrational numbers.
(ii) Show that $\bigcap_{n=1}^{\infty}\left(0, \frac{1}{n}\right)=\phi($ null set $)$.
(b) (i) Define absolute convergence and conditional convergence of infinite series. Provide suitable examples.
(ii) Show that a series $\sum_{n=1}^{\infty} a_{n}$ of real numbers is convergent absolutely if and only if $\sum_{n=1}^{\infty} a_{n}^{+}$and $\sum_{n=1}^{\infty} a_{n}^{-}$are both convergent, where $a_{n}^{+}=\max \left(a_{n}, 0\right)$ and $a_{n}^{-}=-\min \left(a_{n}, 0\right)$. $\quad(2+2)+6$
(c) (i) State Lagrange's Mean Value Theorem and discuss one of its applications.
(ii) Give an example of a function which is uniformly continuous on [0,1] differentiable on $(0,1)$ but the derivative is not bounded on $(0,1)$. Justify your answer.
(d) (i) Discuss the use of Lagrange multipliers to find extremum of a function of several variables satisfying some constraints.
(ii) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the function defined by $f(x, y)=x^{2}-12 y$. Find the maximum and minimum values of the function f on the circle $x^{2}+y^{2}=49$.
(e) (i) Stating necessary result(s), find the value of the following limit : $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}$
(ii) Stating necessary result(s), evaluate : $\int_{0}^{\frac{\pi}{2}} \frac{\sin (x)}{x^{3 / 2}} d x$.

