## 2018

## PHYSICS

## Paper : PHY-411

(Mathematical Methods)

## Full Marks : 50

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words
as far as practicable.
Answer any five questions.

1. (a) Find the rank and nullity of the matrix $A=\left(\begin{array}{lllll}1 & 2 & 0 & 1 & 1 \\ 2 & 4 & 1 & 3 & 0 \\ 4 & 8 & 1 & 5 & 2\end{array}\right)$.
(b) Consider a discrete finite group $G$ under a group composition law denoted by $o$. Prove that in any row or column of the group composition table, every distinct element of $G$ may appear only once.
(c) The Laplace transform of a function $f(x)$ is defined as,

$$
\mathcal{L}\{f(x)\}=\int_{0}^{\infty} d x e^{-s x} f(x)
$$

Find $\mathcal{L}\left\{\int_{0}^{x} g(t) d t\right\}$, clearly stating all assumptions made.
2. (a) Consider the vector space of $2 \times 2$ matrices $M_{2 \times 2}$. Does the set $K$ of all matrices of the form $\left(\begin{array}{cc}2 a & b \\ 3 a+b & 3 b\end{array}\right)$, with $a$ and $b$ real, form a subspace of $M_{2 \times 2}$ ?
(b) Verify if the vectors $p_{1}(x)=x+1, p_{2}(x)=x-2$ and $p_{3}(x)=x^{2}-1$ are linearly independent.
(c) What are the eigenvalues of the matrix $A=\left(\begin{array}{ccc}3 & -1 & -2 \\ 2 & 0 & -2 \\ 2 & -1 & -1\end{array}\right)$ ?

If the matrix is diagonalizable, find the diagonalizing matrix $P$ such that $P^{-1} A P$ is a diagonal matrix.
$[3+2+(2+3)]$
3. (a) Consider the group of permutations of three objects, $S_{3}$. Identify all the subgroups and their order. For a nontrivial proper subgroup of your choice, write down a faithful matrix representation.
(b) Generate a group from two elements $A$ and $B$ subject only to the relation $A^{2}=B^{3}=(A B)^{2}=E$, where $E$ is the identity of the group.
(c) Show that a rotational transformation of vectors in a plane through an arbitrary angle $\theta$ may be expressed as $\exp \left(i \theta \sigma_{2}\right)$, where $\sigma_{2}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$.
4. (a) Let $G=\left\{g_{1}, g_{2}, \ldots, g_{k}\right\}$ be a discrete finite group under a group operation denoted by 0 , where each element is its own inverse. Prove that the group is Abelian, i.e., $g_{r} \circ g_{s}=g_{s} \circ g_{r}$. Use of $\left(g_{r} \circ g_{s}\right)^{-1}=g_{s}^{-1} \circ g_{r}^{-1}$ is highly discouraged.
(b) The Fourier transform of a function $f(t)$, denoted by $F(\omega)$, may be defined as,

$$
F(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d t e^{t \omega t} f(t) .
$$

Find the Fourier transform of $f^{\prime}(t)$, where ' implies derivative w.r.t. $t$. State clearly all assumptions made.
(c) The equation $y^{\prime \prime}(x)+P(x) y^{\prime}(x)+Q(x) y(x)=0$ has a solution $y_{1}(x)$. Assume a second solution of the form $y_{2}(x)=y_{1}(x) f(x)$ and substitute this into the original equation to obtain an expression for $f(x)$. Hence, given the solution $y_{1}(x)=1$ for the Legendre equation $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0$ for $n=0$, obtain the second solution.
$3+2+(3+2)$
5. (a) Find the Green function for the equation $d^{2} y(x) / d x^{2}+f(x)=0$, subject to the boundary conditions $y(0)=0, y(1)=0$. Hence solve the equation $d^{2} y(x) / d x^{2}+x^{2}=0$ with these boundary conditions.
(b) Transform the equation $y^{\prime \prime}-\frac{1}{x^{2}} y^{\prime}+\frac{2}{x^{3}} y=0$ into self-adjoint form.
(c) Show that $\sinh x$ and $\cosh x$ are linearly independent.
$(3+3)+3+1$
6. (a) Evaluate $\int_{0}^{\infty} \frac{\cos (a x) d x}{x^{2}+b^{2}}$ where $a, b>0$, by the method of contour integration.
(b) Find the residue of the function $1 /\left(z^{2}+1\right)^{2}$ at $z=i$. Also determine whether this function has a singularity at the point at infinity.
(c) Find the Laurent series expansion of the function $\frac{1}{z(z-1)}$ about $z=0$ for $|z|>1 . \quad 5+(2+1)+2$
7. (a) Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{5+4 \sin \theta}$ by the method of contour integration.
(b) The imaginary part of an analytic function $f(z)$ is $4\left(x^{3} y-x y^{3}\right)$. Find the real part. Express $f(z) \notin$ function of $z$.
(c) Expand $(1 / z) \sin (1 / z)$ about $z=0$ and identify the type of singularity.

