T(I)-Physics-H-1

2×10

# 2021

# PHYSICS — HONOURS

# **First Paper**

## Full Marks : 100

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

#### Answer question no. 1 and any four questions from each Unit.

- 1. Answer any ten questions :
  - (a) Sketch the two Gaussian probability density functions  $f_1(x)$  and  $f_2(x)$  with the same mean x = 0, but with two different standard deviations  $\sigma_1$  and  $\sigma_2$ , with  $\sigma_2 > \sigma_1$ .
  - (b) Prove that  $\oint u \vec{\nabla} v \cdot d \vec{r} = -\oint v \vec{\nabla} u \cdot d \vec{r}$ .
  - (c) If two matrices commute, show that they have simultaneous eigenvectors. (Assume the case to be non-degenerate).
  - (d) Show that  $x\delta'(x) = -\delta(x)$ .
  - (e) Show that  $\delta(ax) = \frac{1}{a}\delta(x)$ , where a > 0.
  - (f) State the initial condition of the struck string.
  - (g) Define linear magnification and angular magnification of an optical system.
  - (h) The distance between two points in a medium is 3 m. The optical path corresponding to this distance is 4 m. Find out the velocity of light in the medium.
  - (i) A particle moves with S.H.M. of amplitude 20 cm and period 4 sec. The displacement at t = 0 is +20 cm. Find the position of the particle at t = 0.5 sec.
  - (j) What are the characteristics of ideal voltage and current sources?
  - (k) What is an emitter follower?
  - (l) Verify the Boolean identity AC + ABC = AC.

#### Unit - I

**2.** (a) What is meant by absolute convergence of an infinite series? What is conditionally convergent series? Explain with examples.

**Please Turn Over** 

#### T(I)-Physics-H-1

(b) For free paths of length x during which a molecule does not suffer a collision with another molecule in a dilute gas, one uses the exponential distribution :

$$P_E(x;\lambda) = \frac{1}{\lambda} e^{-x/\lambda}, \ 0 \le x < \infty$$

Calculate the average value of x in the above distribution. Plot  $P_E$  vs. x and calculate the area under the curve.

(c) Four coins are tossed simultaneously. What is the probability of getting at least one head?

4+(2+1+1)+2

- 3. (a) Verify the divergence theorem for  $\vec{A} = 4xz\hat{i} + y^2\hat{j} + yz\hat{k}$  and a cube bounded by the planes x = 0, x = 1, y = 0, y = 1, z = 0 and z = 1.
  - (b) Prove that  $\vec{\nabla} \times (\phi \vec{A}) = \vec{\nabla} \phi \times \vec{A} + \phi \vec{\nabla} \times \vec{A}$  for any vector  $\vec{A}$ .

Hence prove that  $\oint (u \vec{\nabla} v) \cdot d\vec{r} = \int_{S} (\vec{\nabla} u) \times (\vec{\nabla} v) \cdot d\vec{S}$  for any two scalars u and v. 6+(2+2)

4. (a) Using divergence theorem, prove that  $\oint d\vec{S} = 0$  for any closed surface.

- (b) Find the eigenvalues and normalized eigenvectors of the matrix  $\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ .
- (c) Prove that the commutator of two Hermitian matrices is skew-Hermitian (anti-Hermitian).
- (d) Prove that the product of two unitary matrices is also unitary. 2+(2+2)+2+2
- 5. (a) Consider Hermite's equation :

$$\frac{d^2 y}{dx^2} - 2x\frac{dy}{dx} + 2\alpha y = 0$$

and assume a series solution  $y(x) = \sum_{\lambda=0}^{\infty} a_{\lambda} x^{k+\lambda}$ .

(i) Find the indicial equation.

- - -

- (ii) Find the recurrence relation among the coefficients  $a_{\lambda}$ .
- (iiii) Find the condition on  $\alpha$  so that the infinite series solution becomes a polynomial.

(b) Solve 
$$\frac{\partial U}{\partial x} = 4 \frac{\partial U}{\partial y}$$
 by the method of separation of variables, given that  $U(x, 0) = 8e^{-3x}$ .  
(2+2+2)+4

6. (a) Laplace's equation in spherical polar coordinates for a problem with azimuthal symmetry is given by

(3)

$$\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial V}{\partial r}\right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial \theta}\left(\sin\theta\frac{\partial V}{\partial \theta}\right) = 0.$$

Let  $V(r, \theta) = R(r)T(\theta)$ . Taking the separation constant to be l(l + 1), solve for R(r). Also, show that the substitution of  $w = \cos\theta$  in the angular part leads to Legendre's equation for  $T(\theta) = P(w)$ .

- (b) Show that the Fourier transform of  $f(x) = e^{-|x|}$  is  $F(k) = \sqrt{\frac{2}{\pi}} \frac{1}{k^2 + 1}$ . (3+3)+4
- 7. (a) Expand  $f(x) = \begin{cases} 0, -\pi < x \le 0 \\ x, & 0 \le x < \pi \end{cases}$  in a Fourier series.

Hence show that  $\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots$ 

(b) State the Dirichlet conditions for validity of a Fourier series expansion. Do these conditions hold for the function tan x? Explain. (4+2)+(2+1+1)

### Unit - II

- 8. (a) Using Fermat's principle, deduce the relation  $\frac{1}{v} + \frac{1}{u} = \frac{2}{r}$  (with usual symbols) for paraxial image formation by a concave mirror.
  - (b) Explain the term 'optical path'.
  - (c) What is meant by equivalent lens of two thin lenses separated by a distance? Explain with diagram. 5+2+3
- 9. (a) Show that in case of forced vibration,  $\frac{average K.E}{average P.E} = \frac{\omega^2}{\omega_0^2}$  where  $\omega_0$  is the natural frequency of

oscillation and  $\omega$  is the frequency of the driving system.

- (b) The dispersion relation for transverse waves propagating in a medium is given by  $\omega^2 = \omega_p^2 + k^2 c^2$ where  $\omega$  is angular frequency, k is wave number and  $\omega_p$  and c are constants. Show that  $v_g v_p = c^2$ , where  $v_g$  is group velocity and  $v_p$  is phase velocity.
- (c) A particle is subjected to two SHM-s represented by  $x = A \cos \omega t$  and  $y = B \sin 2\omega t$ . Find the equation for the resultant locus in XY plane.
- (d) A plane progressive wave is given by  $y(x,t) = A\sin\left(\omega t \frac{\omega}{v}x + \alpha\right)$ . Find the differential equation for the wave motion. 3+2+3+2

### **Please Turn Over**

- **10.** (a) Explain the terms 'refraction matrix' and 'system matrix' of an optical system for refraction of paraxial rays.
  - (b) Consider a plano-convex lens of a material of refractive index 1.5. The convex surface has a radius of 5 cm and is facing the incident light. The central thickness of the lens is 3 mm. Obtain the system matrix.
  - (c) State Huygen's principle. Apply it to deduce the laws of reflection of plane waves at a plane reflector. 4+2+(1+3)
- 11. (a) Consider the T and  $\pi$ -networks of resistances of the following figures :



Show that these networks will be equivalent in the sense that the resistances between the corresponding pair of terminals will be identical provided

$$R_1 = \frac{R_b R_c}{R_a + R_b + R_c}, \ R_2 = \frac{R_c R_a}{R_a + R_b + R_c}, \ R_3 = \frac{R_a R_b}{R_a + R_b + R_c}$$

(b) Define reverse saturation current of a p-n junction diode. Why is it temperature dependent?

- (c) Make a comparative study of CB, CC and CE amplifiers with reference to current and voltage gain. 4+(2+1)+3
- 12. (a) State and explain maximum power transfer theorem.
  - (b) What is the difference between an enhancement and a depletion MOSFET?
  - (c) Explain the basic principle of an LED.
  - (d) How does an FET differ from a BJT?
- 13. (a) Using discrete components, draw the circuit diagram of an AND gate and explain how it functions.
  - (b) Draw diagram and explain how one can obtain the function of the gates OR, AND and NOT, by using NOR gates only.

(1+3)+2+2+2

(c) Verify the Boolean identity  $A + \overline{AB} = A + B$ . 4+4+2