2022

MATHEMATICS - HONOURS

Paper: CC-13
 (Metric Space and Complex Analysis)
 Full Marks : 65

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.
$[\mathbb{N}, \mathbb{R}, \mathbb{C}$ denote the set of all natural, real and complex numbers respectively.]
(Notations and symbols have their usual meanings.)

1. Answer all the following multiple choice questions. For each question $\mathbf{1}$ mark for choosing correct option and 1 mark for justification.
(a) Which one of the following is not a metric on \mathbb{R} ?
(i) $d(x, y)=|x-y|$
(ii) $d(x, y)=\left|x^{2}-y^{2}\right|$
(iii) $d(x, y)=\left|x^{3}-y^{3}\right|$
(iv) $d(x, y)=\frac{\left|x^{3}-y^{3}\right|}{1+\left|x^{3}-y^{3}\right|}$.
(b) Let (X, d) be a metric space and $A, B \subseteq X$. Choose the correct statement.
(i) $(A \cap B)^{\circ}=A^{\circ} \cap B^{\circ}$
(ii) $\overline{A \cap B}=\bar{A} \cap \bar{B}$
(iii) $A \cap \partial A=\phi$
(iv) $d(A \cup B)=d(A)+d(B)$.
[$\partial(A)$ denotes boundary of $A, d(A)$ denotes diameter of A.]
(c) Let $\left(X, d_{1}\right)$ and $\left(Y, d_{2}\right)$ be two metric spaces and $f: X \rightarrow Y$ be a continuous mapping. Then
(i) $f(\bar{A})=\overline{f(A)}$ for all $A \subseteq X$
(ii) $f(F)$ is closed when $F \subseteq X$ is closed in X
(iii) $f^{-1}(F)$ is closed in X whenever F is closed in Y
(iv) $f^{-1}(\bar{B}) \subseteq \overline{f^{-1}(B)}$ for any $\mathrm{B} \subseteq Y$.
(d) Let $A=\left\{\frac{1}{m}+\frac{1}{n}: m, n \in \mathbb{N}\right\} \cup\{0\}$. Then A as subspace of the real line \mathbb{R} is
(i) compact but not complete
(ii) complete but not compact
(iii) compact and complete
(iv) neither compact nor complete.
(e) Let $\left(\mathbb{R}, d_{u}\right)$ denotes the usual metric space of \mathbb{R} and $\left(\mathbb{R}, d^{*}\right)$ denotes the discrete metric space of \mathbb{R}. Then which of the following statement is true.
(i) d_{u} and d^{*} are equivalent metrices
(ii) every d_{u}-open set is d^{*}-open
(iii) $d_{u}=d^{*}$
(iv) $\{0\}$ is open in both metric spaces.
(f) Let $f(z)=\frac{|z|}{\operatorname{Re}(z)}$, if $\operatorname{Re}(z) \neq 0$

$$
=0, \quad \text { if } \operatorname{Re}(z)=0 \text {, then }
$$

(i) f is continuous everywhere
(ii) f is differentiable everywhere
(iii) f is continuous nowhere
(iv) f is not continuous at $z=0$.
(g) The radius of convergence of the power series $\sum\left(\frac{n \sqrt{2}+i}{1+2 i n}\right) z^{n}$ is
(i) 1
(ii) $\sqrt{2}$
(iii) $\frac{1}{\sqrt{2}}$
(iv) 2 .
(h) The Mobius transformation which maps $z_{1}=0, z_{2}=-i$ and $z_{3}=-1$ into $w_{1}=i, w_{2}=1, w_{3}=0$ respectively is given by
(i) $w=-i\left(\frac{z+1}{z-1}\right)$
(ii) $w=i\left(\frac{z+1}{z-1}\right)$
(iii) $w=-i\left(\frac{z-1}{z+1}\right)$
(iv) $w=i\left(\frac{z-1}{z+1}\right)$.
(i) $\int_{C} \frac{z+4}{z^{2}+2 z+5} d z$, where C is the circle $|z+1|=1$ is
(i) $2 \pi i$
(ii) $4 \pi i$
(iii) 0
(iv) πi.
(j) $\frac{1}{2 \pi i} \int_{C} \frac{z^{2}+5}{z-3} d z$, where C is $|z|=4$ is
(i) 8
(ii) 10
(iii) 12
(iv) 14 .

$$
\text { Unit - } 1
$$

(Metric Space)

Answer any five questions.
2. Suppose that $\left(X_{i}, d_{i}\right)$ is a metric space for $i=1,2, \ldots m$ and let $X=\prod_{i=1}^{m} X_{i}$. Show that $d: X \rightarrow \mathbb{R}$ defined by $d(x, y)=\sum_{i=1}^{m} \frac{1}{i}\left(d_{i}\left(x_{i}, y_{i}\right)\right)$, for all $x=\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{m}\right) \in X$ is a metric on X.
3. Let (X, d) be a metric space and Y be a subspace of X. Let Z be a subset of Y. Prove that Z is closed in Y if and only if there exists a closed set $F \subseteq X$ such that $Z=F \cap Y$.
4. (a) Let $X=\left\{(x, y) \in \mathbb{R}^{2}, x>0, y \geq \frac{1}{x}\right\}$ and let d be the Euclidean metric on \mathbb{R}^{2}. Check whether X is complete or not as a metric subspace of \mathbb{R}^{2}.
(b) Show that uniformly continuous image of a complete metric space is not necessarily complete.
$3+2$
5. Suppose d is a metric on a set X. Prove that the inequality

$$
|d(x, y)-d(z, w)| \leq d(x, z)+d(y, w)
$$

holds for all $x, y, z, w \in X$. Hence show that the function d is uniformly continuous on $X \times X, \quad 3+2$
6. Let (X, d) be a metric space. Then prove that X is compact if and only if every collection of closed subsets of X having finite intersection property has non-empty intersection.
7. What do you mean by a 'contraction mapping' and a 'weak contraction mapping' of a metric space (X, d) into itself? Let $X=[1, \infty)$ and d be the usual metric on it. Define $T: X \rightarrow X$ by $T(x)=x+\frac{1}{x}$. Show that T is a weak contraction mapping on (X, d) but not a contraction mapping on (X, d). $2+3$
8. (a) Suppose X is a connected metric space and $f: X \rightarrow \mathbb{R}$ is continuous. If $\alpha \in(\inf f(X)$, $\sup f(X))$, then show that $\exists z \in X$ such that $f(z)=\alpha$.
(b) Let (X, d) be a connected metric space with X containing more than one point. Prove that X must be an infinite set.
9. (a) Find $d(A, B)$ for the sets $A=\left\{\left(x, x^{2}\right): x \in[0,1]\right\}$ and $B=\{(x, 1-x): x \in[0,1]\}$ with respect to the Euclidean metric on \mathbb{R}^{2}.
(b) Examine whether $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\frac{\pi}{2}+x-\tan ^{-1} x$ has a fixed point in \mathbb{R}. $\quad 3+2$

Unit - 2

(Complex Analysis)

Answer any four questions.
10. Define stereographic projection. Show that the image of a line T under the stereographic projection is a circle minus north pole in the Riemann sphere S.
11. (a) Show that there does not exist any analytic function f such that $\operatorname{Im} f=x^{3}-y^{3}$.
(b) Show that a Harmonic function $u(x, y)$ satisfies the differential equation $\frac{\partial^{2} u}{\partial z \partial \bar{z}}=0$.
12. Show that the function $f(z)=e^{-z^{-4}}(z \neq 0), f(0)=0$ is not analytic at $z=0$, although Cauchy-Riemann equations are satisfied at the point $z=0$.
13. Find a Mobius transformation, which maps the upper half plane $\{z: \operatorname{Im} z>0\}$ onto itself, fixing
only $0, \infty$.
14. Show that the sum function of a convergent power series in z is analytic in the interior of its circle of
convergence. convergence. .
15. (a) Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ have radius of convergence $R>0$. Find the radius of convergence of the power series $\sum_{n=0}^{\infty} n^{2} a_{n} z^{n}$.
(b) Evaluate the integral $\int_{|z-i|=1} \frac{z^{2} d z}{z^{2}+1}$.
16. (a) Let C denote a contour of length L and suppose that a function $f(z)$ is piecewise continuous on C. If M is a non-negative constant such that $|f(z)| \leq M$ for all points z on C at which $f(z)$ is defined, then prove that $\left|\int_{C} f(z) d z\right| \leq M L$.
(b) Without evaluating the integral show that

$$
\left|\int_{C} \frac{d z}{z^{4}}\right| \leq 4 \sqrt{2}
$$

where C is the line segment from $z=i$ to $z=1$.

